已知0<a<1,則函數(shù)y=a|x|-|logax|的零點(diǎn)的個(gè)數(shù)為   
【答案】分析:由題意可得,呢命題即求函數(shù)y=a|x|與 y=|logax|的交點(diǎn)的個(gè)數(shù),數(shù)形結(jié)合得出結(jié)論.
解答:解:∵0<a<1,函數(shù)y=a|x|-|logax|的零點(diǎn)的個(gè)數(shù)就等于方程=a|x|=|logax|的解的個(gè)數(shù),即函數(shù)y=a|x|與 y=|logax|的交點(diǎn)的個(gè)數(shù).
如圖所示:
故函數(shù)y=a|x|與 y=|logax|的交點(diǎn)的個(gè)數(shù)為2,
故答案為 2.

點(diǎn)評(píng):本題主要考查方程的根的存在性及個(gè)數(shù)判斷,體現(xiàn)了化歸與轉(zhuǎn)化及數(shù)形結(jié)合的數(shù)學(xué)思想,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問(wèn):是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出如下命題:
命題p:已知函數(shù)y=f(x)=
1-x3
,則|f(a)|<2(其中f(a)表示函數(shù)y=f(x)在x=a時(shí)的函數(shù)值);
命題q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求實(shí)數(shù)a的取值范圍,使命題p,q中有且只有一個(gè)為真命題.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=
f(x)
x
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“一階比增函數(shù)”;若y=
f(x)
x2
在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
x a b c a+b+c
f(x) d d t 4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問(wèn):是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年江蘇省揚(yáng)州中學(xué)高三(下)開(kāi)學(xué)檢測(cè)數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)的定義域?yàn)椋?,+∞),若y=在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“一階比增函數(shù)”;若y=在(0,+∞)上為增函數(shù),則稱(chēng)f(x)為“二階比增函數(shù)”.我們把所有“一階比增函數(shù)”組成的集合記為Ω1,所有“二階比增函數(shù)”組成的集合記為Ω2
(Ⅰ)已知函數(shù)f(x)=x3-2hx2-hx,若f(x)∈Ω1,且f(x)∉Ω2,求實(shí)數(shù)h的取值范圍;
(Ⅱ)已知0<a<b<c,f(x)∈Ω1且f(x)的部分函數(shù)值由下表給出,
xabca+b+c
f(x)ddt4
求證:d(2d+t-4)>0;
(Ⅲ)定義集合Φ={f(x)|f(x)∈Ω2,且存在常數(shù)k,使得任取x∈(0,+∞),f(x)<k},請(qǐng)問(wèn):是否存在常數(shù)M,使得?f(x)∈Φ,?x∈(0,+∞),有f(x)<M成立?若存在,求出M的最小值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年廣東省汕頭市重點(diǎn)中學(xué)高三聯(lián)考數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)在區(qū)間上[1,3]的函數(shù)值大于0恒成立,則實(shí)數(shù)a的取值范圍是( )
A.
B.
C.(1,+∞)
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案