已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線的方程為4x-3y=0,則此雙曲線的離心率為( 。
分析:根據(jù)雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線的方程,得出
b
a
=
4
3
,再利用離心率e=
c
a
=
a2+b2
a2
計算.
解答:解:雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的漸近線的方程為:
b2x2-a2y2=0,即bx±ay=0.
由已知,一條漸近線的方程為4x-3y=0
所以
b
a
=
4
3
,離心率e=
c
a
=
a2+b2
a2
=
5
3

故選D.
點評:本題考查了雙曲線的簡單性質,漸近線,離心率.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
7
=1
,直線l過其左焦點F1,交雙曲線的左支于A、B兩點,且|AB|=4,F(xiàn)2為雙曲線的右焦點,△ABF2的周長為20,則此雙曲線的離心率e=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
的一個焦點與拋物線y2=4x的焦點重合,且該雙曲線的離心率為
5
,則該雙曲線的漸近線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1(b>a>0)
,O為坐標原點,離心率e=2,點M(
5
,
3
)
在雙曲線上.
(1)求雙曲線的方程;
(2)若直線l與雙曲線交于P,Q兩點,且
OP
OQ
=0
.問:
1
|OP|2
+
1
|OQ|2
是否為定值?若是請求出該定值,若不是請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知直線l:kx-y+1+2k=0(k∈R),則該直線過定點
(-2,1)
(-2,1)
;
(2)已知雙曲線
x2
a2
-
y2
b2
=1的一條漸近線方程為y=
4
3
x,則雙曲線的離心率為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1
(a>0,b>0)滿足
a1
b
2
 |=0
,且雙曲線的右焦點與拋物線y2=4
3
x
的焦點重合,則該雙曲線的方程為
 

查看答案和解析>>

同步練習冊答案