【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

【答案】
(1)解:f(x)=2sinxcosx+2 cos2x﹣ =sin2x+ cos2x=2sin(2x+ ),

∵ω=2,∴f(x)的最小正周期T=π,

∵2kπ+ ≤2x+ ≤2kπ+ ,k∈Z,

∴f(x)的單調(diào)減區(qū)間為[kπ+ ,kπ+ ],k∈Z


(2)解:由f( )=2sin[2( )+ ]=2sinA= ,即sinA= ,

∵A為銳角,∴A= ,

由正弦定理可得2R= = = ,sinB+sinC= = ,

∴b+c= × =13,

由余弦定理可知:cosA= = = ,

整理得:bc=40


【解析】(1)f(x)解析式利用二倍角正弦、余弦函數(shù)公式化簡,再利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),找出ω的值,代入周期公式求出最小正周期,由正弦函數(shù)的單調(diào)性確定出f(x)的單調(diào)遞減區(qū)間即可;(2)由f(x)解析式,以及f( )= ,求出A的度數(shù),將sinB+sinC= ,利用正弦定理化簡,求出bc的值即可.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2,8)在拋物線,直線l和拋物線交于B,C兩點,焦點F是三角形ABC的重心,MBC的中點(不在x軸上)

(1)求M點的坐標;

(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某車間將10名技工平均分成甲、乙兩組加工某種零件,在單位時間內(nèi)每個技工加工的合格零件數(shù)的統(tǒng)計數(shù)據(jù)的莖葉圖如圖所示.已知兩組技工在單位時間內(nèi)加工的合格零件平均數(shù)都為

(1)分別求出mn的值;

(2)分別求出甲、乙兩組技工在單位時間內(nèi)加工的合格零件的方差,并由此分析兩組技工的加工水平;

(3)質(zhì)檢部門從該車間甲、乙兩組技工中各隨機抽取一名技工,對其加工的零件進行檢測,若兩人加工的合格零件個數(shù)之和大于18,則稱該車間“質(zhì)量合格”,求該車間“質(zhì)量合格”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數(shù)學成績(均為整數(shù))分成六組[90,100),[100,110),…,[140,150]后得到如下部分頻率分布直方圖,觀察圖形的信息,回答下列問題:

(1)求分數(shù)在[120,130)內(nèi)的頻率;

(2)估計本次考試的中位數(shù);

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2人,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=cos x,a等于拋擲一顆均勻的正六面體骰子得到的點數(shù),則y=f(x)在[0,4]上有偶數(shù)個零點的概率是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數(shù),則隨機變量的數(shù)字期望是(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,是正方形所在平面外一點,在面上的正投影,

,.有以下四個命題:

(1)⊥面;(2);

(3)以作為鄰邊的平行四邊形面積是8;

(4)恰在上.

其中正確命題的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的兩個焦點坐標分別為F1(-,0)F2(,0),且橢圓過點

(1)求橢圓方程;

(2)過點作不與y軸垂直的直線l交該橢圓于MN兩點,A為橢圓的左頂點,證明

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對邊,若△ABC的周長為2(+1),且sin B+sin C=sin A,則a= (  )

A. B. 2 C. 4 D.

【答案】B

【解析】

根據(jù)正弦定理把轉(zhuǎn)化為邊的關(guān)系,進而根據(jù)ABC的周長,聯(lián)立方程組,可求出a的值.

根據(jù)正弦定理,可化為

∵△ABC的周長為

聯(lián)立方程組,

解得a=2.

故選:B

【點睛】

(1)在三角形中根據(jù)已知條件求未知的邊或角時,要靈活選擇正弦、余弦定理進行邊角之間的轉(zhuǎn)化,以達到求解的目的.

(2)求角的大小時,在得到角的某一個三角函數(shù)值后,還要根據(jù)角的范圍才能確定角的大小,這點容易被忽視,解題時要注意.

型】單選題
結(jié)束】
7

【題目】已知數(shù)列{an}中,an=n2-kn(n∈N*),且{an}單調(diào)遞增,則k的取值范圍是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

查看答案和解析>>

同步練習冊答案