已知{an}是公差不為0的等差數(shù)列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},則an=
2n
2n
分析:通過不等式的解集,求出列出方程組,利用數(shù)列是等差數(shù)列,求出首項與公差,然后求出通項公式.
解答:解:{an}是公差不為0的等差數(shù)列,不等式x2-a3x+a4≤0的解集是{x|a1≤x≤a2},
所以a12-a3a1+a4=0,a22-a3a2+a4=0,設(shè)數(shù)列的公差為d,
a12-(a1+2d)a1+a1+3d=0,(d+a12-(a1+2d)(a1+d)+a1+3d=0,
解得a1=d=2,
所以數(shù)列的通項公式為:an=2n.
故答案為:2n.
點評:本題考查等差數(shù)列的性質(zhì),根與系數(shù)的關(guān)系,等差數(shù)列的通項公式的應(yīng)用,考查計算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)求數(shù)列{2an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為零的等差數(shù)列,{bn}等比數(shù)列,滿足b1=a12,b2=a22,b3=a32
(I)求數(shù)列{bn}公比q的值;
(II)若a2=-1且a1<a2,求數(shù)列{an}公差的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項;
(Ⅱ)令bn=
1
(an+1)2-1
(n∈N*)
,數(shù)列{bn}的前n項和Tn,證明:Tn
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文)已知{an}是公差不為零的等差數(shù)列,a1=1,且a1,a3,a9成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
1anan+1
}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公差不為0的等差數(shù)列,{bn}是等比數(shù)列,其中a1=b1=1,a4=7,a5=b2,且存在常數(shù)α,β使得對每一個正整數(shù)n都有an=logαbn+β,則α+β=
4
4

查看答案和解析>>

同步練習(xí)冊答案