已知f (x) =(a>0,且a≠1)是R上的增函數(shù),求實(shí)數(shù)a的取值范圍.

解析:設(shè)x1x2∈R,且x1x2

    ∵f (x)在R上為增函數(shù),∴f (x1) f (x2)<0.

    又f (x1) f (x2) =

                 =

    ①當(dāng)0<a<1時,由x1x2

,由f (x1) f (x2)<0,得<0,而0<a<1時<0恒成立,∴0<a<1符合題意.

②當(dāng)a>1時,由x1x2,

f (x1) f (x2)<0得>0,∵a>1,∴a2 2>0,從而a.∴a

綜上知:所求a的范圍是(0,1)∪(,+∞).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)y=f(x)在(a,b)上的導(dǎo)函數(shù)為f'(x),f'(x)在(a,b)上的導(dǎo)函數(shù)為f''(x),若在(a,b)上,f''(x)<0恒成立,則稱函數(shù)f(x)在(a,b)上為“凸函數(shù)”.已知f(x)=
1
12
x4-
1
6
mx3-
3
2
x2

(Ⅰ)若f(x)為區(qū)間(-1,3)上的“凸函數(shù)”,則實(shí)數(shù)m=
 

(Ⅱ)若當(dāng)實(shí)數(shù)m滿足|m|≤2時,函數(shù)f(x)在(a,b)上總為“凸函數(shù)”,則b-a的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2x+1
x+a
,其中a≠
1
2
.求其反函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
(3a-2)x-2a,x≤1
logax,,x>1
在R上為增函數(shù),那么a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
2
3
x(x2-3ax-
9
2
)(a∈R)

(I)若過函數(shù)f(x)圖象上一點(diǎn)P(1,t)的切線與直線x-2y+b=0垂直,求t的值;
(II)若函數(shù)f(x)在(-1,1)內(nèi)是減函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
f(x-1),x≥0
x2,x<0
,則f(2)+f(-2)的值為( 。

查看答案和解析>>

同步練習(xí)冊答案