已知函數(shù)f(x)=(1+cotx)sin2x-2sin(x+數(shù)學(xué)公式)sin(x-數(shù)學(xué)公式).
(1)若tanα=2,求f(α);
(2)若x∈[數(shù)學(xué)公式,數(shù)學(xué)公式],求f(x)的取值范圍.

解:(1)∵f(x)=(1+cotx)sin2x-2sin(x+)sin(x-)=sin2x+sinxcosx+cos2x
=+=
∵tanα=2,∴sin2α=2sinαcosα===,
cos2α==

=
由tanα=2得,
,
所以
(2)由(1)得
,所以
從而
分析:(1)利用正切化為正弦、余弦,利用兩角和與差的三角函數(shù)展開,二倍角公式的應(yīng)用化為,通過tanα=2,求出sin2α,cos2α,然后求出f(α);
(2)化簡函數(shù)為:,由x∈[],求出2x+的范圍,然后求f(x)的取值范圍.
點(diǎn)評:三角函數(shù)的化簡,包括降冪擴(kuò)角公式、輔助角公式都是高考考查的重點(diǎn)內(nèi)容,另外對于三角函數(shù)的化簡到最簡形式一定要求掌握.熟練利用正余弦函數(shù)的圖象求形如y=Asin(ωx+φ)性質(zhì).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案