已知函數(shù)f(x)=lg
1-x
1+x

(1)求函數(shù)f(x)的定義域D;
(2)判斷函數(shù)的奇偶性;
(3)若a、b∈D,求證:f(a)+f(b)=f(
a+b
1+ab
)
分析:(1)對數(shù)的真數(shù)大于0,用穿根法解分式不等式.
(2)由(1)知定義域關(guān)于原點(diǎn)對稱,考查f(-x)與f(x)的關(guān)系,依據(jù)定義判斷.
(3)若a、b∈D,先化簡f(a)+f(b),再化簡f(
a+b
1+ab
)的解析式,然后作比較發(fā)現(xiàn)是相等的式子.
解答:解:(1)由題意得:
1-x
1+x
>0,∴-1<x<1,∴函數(shù)的定義域?yàn)椋海?1,1);
(2)定義域關(guān)于原點(diǎn)對稱,f(-x)=lg
1+x
1-x
=-lg
1-x
1+x
=-f(x),∴函數(shù)是奇函數(shù);
(3)若a、b∈D,f(a)+f(b)=lg
1-a
1+a
+lg
1-b
1+b
=lg
1-a-b+ab
1+a+b+ab
,
f(
a+b
1+ab
)=lg
1-
a+b
1+ab
1+
a+b
1+ab
=lg
1+ab-a-b
1+ab+a+b
,∴f(a)+f(b)=f(
a+b
1+ab
).
點(diǎn)評:本題考查函數(shù)的定義域的求法,利用定義判斷函數(shù)的奇偶性,以及利用對數(shù)的運(yùn)算性質(zhì)證明等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
3
2
ax2-(a-3)x+b

(1)若函數(shù)f(x)在P(0,f(0))的切線方程為y=5x+1,求實(shí)數(shù)a,b的值:
(2)當(dāng)a<3時(shí),令g(x)=
f′(x)
x
,求y=g(x)在[l,2]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
2
x2-alnx
的圖象在點(diǎn)P(2,f(2))處的切線方程為l:y=x+b
(1)求出函數(shù)y=f(x)的表達(dá)式和切線l的方程;
(2)當(dāng)x∈[
1
e
,e]
時(shí)(其中e=2.71828…),不等式f(x)<k恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
12
x2+a
(a為常數(shù)),直線l與函數(shù)f(x)、g(x)的圖象都相切,且l與函數(shù)f(x)的圖象的切點(diǎn)的橫坐標(biāo)為1.
(1)求直線l的方程及a的值;
(2)當(dāng)k>0時(shí),試討論方程f(1+x2)-g(x)=k的解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
13
x3+x2+ax

(1)討論f(x)的單調(diào)性;
(2)設(shè)f(x)有兩個極值點(diǎn)x1,x2,若過兩點(diǎn)(x1,f(x1)),(x2,f(x2))的直線l與x軸的交點(diǎn)在曲線y=f(x)上,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-
32
ax2+b
,a,b為實(shí)數(shù),x∈R,a∈R.
(1)當(dāng)1<a<2時(shí),若f(x)在區(qū)間[-1,1]上的最小值、最大值分別為-2、1,求a、b的值;
(2)在(1)的條件下,求經(jīng)過點(diǎn)P(2,1)且與曲線f(x)相切的直線l的方程;
(3)試討論函數(shù)F(x)=(f′(x)-2x2+4ax+a+1)•ex的極值點(diǎn)的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案