已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)當(dāng)k=5,M=100時(shí),對(duì)給定的首項(xiàng),若由已知條件該數(shù)列被唯一確定,求數(shù)列{an}的通項(xiàng)公式;
(3)記Sk=a1+a2+…+ak,對(duì)于確定的常數(shù)d,當(dāng)Sk取到最大值時(shí),求數(shù)列{an}的首項(xiàng).
【答案】分析:(1)利用a12+ak+12≤M,結(jié)合a1=2,當(dāng)k=3時(shí),M=100,可求d的值,從而可以寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)由題意,關(guān)于kd的不等式(kd)2+2a1•kd+2a12-100≤0的解集是單元素集,從而可求其首項(xiàng)與公差,進(jìn)一步可得數(shù)列{an}的通項(xiàng)公式;
(3),所以,利用a12+ak+12≤M,化簡(jiǎn)可得,從而有,當(dāng)且僅當(dāng)時(shí),
Sk取到最大值,故問(wèn)題得解.
解答:解:(1)因?yàn)閐是正整數(shù),由22+(2+3d)2≤100得,d=1或2.…(2分)
所求的數(shù)列為2,3,4,5或2,4,6,8.…(4分),故問(wèn)題得解.
(2)由題意,關(guān)于kd的不等式(kd)2+2a1•kd+2a12-100≤0的解集是單元素集,…(5分)
所以△=(2a12-4(2a12-100)=0,解得a1=±10.…(7分)
因?yàn)閗d>0,所以a1<0,即a1=-10,5d=-10,d=-2,所以an=2n-12.…(10分)
(3),所以…(11分),…(12分)
化簡(jiǎn)得…(14分)
當(dāng)時(shí),,即…(15分)
所以當(dāng)Sk取到最大值時(shí)有,…(16分)
,解得.…(18分)
點(diǎn)評(píng):本題主要考查數(shù)列與汗水的結(jié)合,考查學(xué)生分析問(wèn)題、解決問(wèn)題的能力,有一定的難度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差為d的等差數(shù)列,它的前n項(xiàng)和為Sn,S4=2S2+4,bn=
1+an
an

(Ⅰ)求公差d的值;
(Ⅱ)若a1=-
5
2
,求數(shù)列{bn}的通項(xiàng)公式bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)當(dāng)k=5,M=100時(shí),對(duì)給定的首項(xiàng),若由已知條件該數(shù)列被唯一確定,求數(shù)列{an}的通項(xiàng)公式;
(3)記Sk=a1+a2+…+ak,對(duì)于確定的常數(shù)d,當(dāng)Sk取到最大值時(shí),求數(shù)列{an}的首項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•寶山區(qū)二模)已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)若數(shù)列{an}的各項(xiàng)均為整數(shù),對(duì)給定的常數(shù)d,當(dāng)數(shù)列由已知條件被唯一確定時(shí),證明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此時(shí)數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2008年上海市寶山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知{an}是公差d大于零的等差數(shù)列,對(duì)某個(gè)確定的正整數(shù)k,有a12+ak+12≤M(M是常數(shù)).
(1)若數(shù)列{an}的各項(xiàng)均為正整數(shù),a1=2,當(dāng)k=3時(shí),M=100,寫(xiě)出所有這樣數(shù)列的前4項(xiàng);
(2)若數(shù)列{an}的各項(xiàng)均為整數(shù),對(duì)給定的常數(shù)d,當(dāng)數(shù)列由已知條件被唯一確定時(shí),證明a1≤0;
(3)求S=ak+1+ak+2+…+a2k+1的最大值及此時(shí)數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案