設(shè),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為S,則S2=    ,Sn=   
【答案】分析:由題意得對(duì)M的任意非空子集A一共有2n-1個(gè):在所有非空子集中每個(gè)元素出現(xiàn)2n-1次可以推出有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1個(gè)子集不含n,n-1,n-2…k-1,而含k,進(jìn)而利用錯(cuò)位相減法求出其和.
解答:解:由題意得:在所有非空子集中每個(gè)元素出現(xiàn)2n-1次.
故有2n-1個(gè)子集含n,有2n-2個(gè)子集不含n含n-1,有2n-3子集不含n,n-1,含n-2…有2k-1個(gè)子集不含n,n-1,n-2…k-1,而含有k.
∵定義f(A)為A中的最大元素,
∴Sn=2n-1×n+2n-2×(n-1)+…+21×2+1
Sn=1+21×2+22×3+23×4+…2n-1×n①
又2Sn=2+22×2+23×3+24×4+…2n×n…②錯(cuò)位相減,
∴①-②可得-Sn=1+21+22+23+…+2n-1-2n×n
∴Sn=(n-1)2n+1
∴S2=(2-1)×22+1=5.
故答案為:5,(n-1)2n+1.
點(diǎn)評(píng):解決此類(lèi)問(wèn)題的關(guān)鍵是讀懂并且弄清題意,結(jié)合數(shù)列求和的方法求其和即可,找出規(guī)律是關(guān)鍵,此題難度比較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)數(shù)學(xué)公式,對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為S,則S2=________,Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)數(shù)學(xué)公式,對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年河南省新鄉(xiāng)、許昌、平頂山高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:填空題

設(shè),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013年山西省忻州實(shí)驗(yàn)中學(xué)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:填空題

設(shè),對(duì)Xn的任意非空子集A,定義f(A)為A中的最大元素,當(dāng)A取遍Xn的所有非空子集時(shí),對(duì)應(yīng)的f(A)的和為Sn,則Sn=   

查看答案和解析>>

同步練習(xí)冊(cè)答案