分析 (Ⅰ)求出曲線C1的普通方程和曲線C2的直角坐標方程,聯(lián)立方程組能求出曲線C1與C2的交點M的直角坐標.
(Ⅱ)曲線C3是以C(1,0)為圓心,半徑r=1的圓,求出圓心C3到直線x+y+1=0的距離d,由此能求出|AB|的最小值.
解答 解:(Ⅰ)曲線${C_1}:\left\{{\begin{array}{l}{x=1+cosα}\\{y={{sin}^2}α-\frac{9}{4}}\end{array}}\right.$(α為參數(shù),α∈R),消去參數(shù)α,
得:y=-$\frac{5}{4}$-(x-1)2,x∈[0,2],①
∵曲線${C_2}:ρsin(θ+\frac{π}{4})$=$-\frac{{\sqrt{2}}}{2}$,∴ρcosθ+ρsinθ+1=0,
∴曲線C2:x+y+1=0,②,
聯(lián)立①②,消去y可得:4x2-12x+5=0,解得x=$\frac{1}{2}$或x=$\frac{5}{2}$(舍去),
∴M($\frac{1}{2},-\frac{3}{2}$).…(5分)
(Ⅱ)曲線C3:ρ=2cosθ,即ρ2=2ρcosθ,
∴曲線C3:(x-1)2+y2=1,是以C3(1,0)為圓心,半徑r=1的圓
圓心C3到直線x+y+1=0的距離為d=$\sqrt{2}$,
∴|AB|的最小值為$\sqrt{2}-1$.…(10分)
點評 本題考查曲線的交點的直角坐標的求法,考查線段的最小值的求法,是中檔題,解題時要認真審題,注意點到直線的距離公式的合理運用.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{17}}{3}$ | B. | $\frac{\sqrt{10}}{2}$ | C. | $\sqrt{13}$ | D. | $\frac{\sqrt{58}}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1:3 | B. | 1 | C. | 5:3 | D. | 3:5 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ($\frac{1}{16}$,0) | B. | (1,0) | C. | (0,$\frac{1}{16}$) | D. | (0,1 ) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com