精英家教網 > 高中數學 > 題目詳情
如圖,正方體ABCD-A1B1C1D1中,E為AB的中點,F為A1A的中點,求證:E、C、D1、F四點共面.
分析:要證明E、C、D1、F四點共面,我們觀察圖形后,發(fā)現EF與CD1可能平行,利用中位線及平行四邊形的性質,易得到結論.
解答:證明:∵在正方體ABCD-A1B1C1D1中,
平面ABB1A1∥平面DCC1D1
且平面ABB1A1∩平面ECD1F=EF,
平面DCC1D1∩平面ECD1F=CD1
∴EF∥CD1,
∴E、C、D1、F  四點共面
點評:本題考查的知識點是空間中直線與直線之間的位置關系,其中根據正方體的結構特征,確定EF∥CD1,進而得到結論是解答本題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1的棱長為a,它的各個頂點都在球O的球面上,問球O的表面積.
(1) 如果球O和這個正方體的六個面都相切,則有S=
 

(2)如果球O和這個正方體的各條棱都相切,則有S=
 

精英家教網

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,E,F分別為BB1和A1D1的中點.證明:向量
A1B
B1C
、
EF
是共面向量.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1棱長為8,E、F分別為AD1,CD1中點,G、H分別為棱DA,DC上動點,且EH⊥FG.
(1)求GH長的取值范圍;
(2)當GH取得最小值時,求證:EH與FG共面;并求出此時EH與FG的交點P到直線B1B的距離.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,正方體ABCD-A1B1C1D1中,若E、F、G分別為棱BC、C1C、B1C1的中點,O1、O2分別為四邊形ADD1A1、A1B1C1D1的中心,則下列各組中的四個點不在同一個平面上的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

精英家教網如圖,正方體ABCD-A1B1C1D1中,E、F、G、H分別是所在棱的三等分點,且BF=DE=C1G=C1H=
13
AB

(1)證明:直線EH與FG共面;
(2)若正方體的棱長為3,求幾何體GHC1-EFC的體積.

查看答案和解析>>

同步練習冊答案