在長(zhǎng)方體中,,, E、 分別為、的中點(diǎn).
(1)求證:平面;
(2)求證:平面.
(1)參考解析;(2)參考解析
【解析】
試題分析:(1)線面垂直的證明關(guān)鍵是要找到平面內(nèi)兩條相交直線與該直線平行.其中BC⊥DF較易,在通過(guò)所給的條件說(shuō)明DF⊥FC.即可得所要證的結(jié)論.
(2)連結(jié)AC與DB交于點(diǎn)O.通過(guò)直線可得四邊形EAOF為平行四邊形所以可得AE//OF即可證得直線以平面的平行.本小題主要就是考查線面的關(guān)系,通過(guò)相應(yīng)的判斷定理,結(jié)合具體的圖形即可得到所求的結(jié)論.
試題解析:在長(zhǎng)方體中,,,、 分別為、的中點(diǎn).
(1)證:∵BC⊥面DCC1D1.∴BC⊥DF.∵矩形DCC1D1中,DC=2a,DD1=CC1=a.∴DF=FC=∴DF2+FC2=DC2
∴DF⊥FC.∵BC∩FC=C.∴DF⊥面BCF
(2) 證:連結(jié)AC交BD于O,連結(jié)FO,EF .∵.∴.∴四邊形EAOF為平行四邊形
∴AE//OF. ∵AE面BDF. OF面BD.∴AE//面BDF
考點(diǎn):1.線面垂直.2.線面平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:高中數(shù)學(xué)綜合題 題型:013
在長(zhǎng)方體中,,點(diǎn)E在AB上,,點(diǎn)F在BC上,.過(guò)EF作與底面成30°角的截面,則截面面積是
[ ]
A. B. C.或 D.或
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(08年惠州一中四模理) 如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上移動(dòng)。
(Ⅰ)證明:;
(Ⅱ)當(dāng)E為的中點(diǎn)時(shí),求點(diǎn)E到面的距離;
(Ⅲ)等于何值時(shí),二面角 的大小為。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆四川省高三開(kāi)學(xué)檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題
(12分)如圖,在長(zhǎng)方體中,,點(diǎn)E為AB的中點(diǎn).
(Ⅰ)求與平面所成的角;
(Ⅱ)求二面角的平面角的正切值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
如圖,在長(zhǎng)方體中,,點(diǎn)E在棱上移動(dòng)。
(1)證明:;
(2)當(dāng)E為的中點(diǎn)時(shí),求點(diǎn)E到面的距離;
(3)等于何值時(shí),二面角的大小為.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com