4.壇子里放著5個相同大小,相同形狀的咸鴨蛋,其中有3個是綠皮的,2個是白皮的.如果不放回地依次拿出2個鴨蛋,求:
(1)第一次拿出綠皮鴨蛋的概率;
(2)第1次和第2次都拿到綠皮鴨蛋的概率;
(3)在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率.

分析 (1)從5個鴨蛋中不放回地依次拿出2個的基本事件數(shù)為μ(Ω)=A52=20.又μ(A)=A31×A41=12,可得第一次拿出綠皮鴨蛋的概率;
(2)因為μ(AB)=A32=6,利用P(AB)=$\frac{μ(AB)}{μ(Ω)}$,求出第1次和第2次都拿到綠皮鴨蛋的概率;
(3)利用條件概率,求出在第1次拿出綠皮鴨蛋的條件下,第2次拿出綠皮鴨蛋的概率.

解答 解:設(shè)第1次拿出綠皮鴨蛋為事件A,第2次拿出綠皮鴨蛋為事件B,則第1次和第2次都拿出綠皮鴨蛋為事件AB.
(1)從5個鴨蛋中不放回地依次拿出2個的基本事件數(shù)為μ(Ω)=A52=20.
又μ(A)=A31×A41=12.于是P(A)=$\frac{μ(A)}{μ(Ω)}$=$\frac{12}{20}$=$\frac{3}{5}$.
(2)因為μ(AB)=A32=6,所以P(AB)=$\frac{μ(AB)}{μ(Ω)}$=$\frac{6}{20}$=$\frac{3}{10}$.
(3)因為μ(AB)=6,μ(A)=12,所以P(B|A)=$\frac{μ(AB)}{μ(A)}$=$\frac{6}{12}$=$\frac{1}{2}$.

點評 本題考查概率的計算,考查條件概率,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2016-2017學年安徽六安一中高一上國慶作業(yè)二數(shù)學試卷(解析版) 題型:選擇題

設(shè)函數(shù)上的常數(shù),若的值域為,則取值范圍為( )

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.根據(jù)正切函數(shù)的圖象,寫出使下列不等式成立的x的集合.
(1)$\frac{\sqrt{3}}{3}$+tanx≥0;
(2)tanx-$\sqrt{3}$≤0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.矩陣A=$[\begin{array}{l}{a}&{k}\\{0}&{1}\end{array}]$(k≠0)的一個特征向量為$\overrightarrow{a}$=$[\begin{array}{l}k\\-1\end{array}]$,A的逆矩陣A-1對應(yīng)的變換將點(3,1)變?yōu)辄c(1,1).則a+k=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,在正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點,D是EF的中點,現(xiàn)沿SE,SF及EF把這個正方形折成一個幾何體,使G1,G2,G3三點重合于點G,這樣,下列五個結(jié)論:(1)SG⊥平面EFG;(2)SD⊥平面EFG;(3)GF⊥平面SEF;(4)EF⊥平面GSD;(5)GD⊥平面SEF.正確的是(  )
A.(1)和(3)B.(2)和(5)C.(1)和(4)D.(2)和(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1、F2,焦距為4,且經(jīng)過點(2,-3).若點P在橢圓上,且在x軸上方,$\overrightarrow{P{F}_{1}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0.
(1)求橢圓C的方程;
(2)①求△PF1F2的內(nèi)切圓M的方程;
②若直線l過△PF1F2的內(nèi)切圓圓心M,交橢圓于A,B兩點,且A,B關(guān)于點M對稱,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.若正數(shù)a,b滿足ab-(a+b)=1,則a+b的最小值是(  )
A.2+2$\sqrt{2}$B.2$\sqrt{2}$-2C.$\sqrt{5}$+2D.$\sqrt{5}$-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.設(shè)直線l為公海的分界線,一巡邏艇在A處發(fā)現(xiàn)了北偏東60°的海面B處有一艘走私船,走私船正向停泊在公海上接應(yīng)的走私海輪C航行,以便上海輪后逃竄.已知巡邏艇的航速是走私船航速的2倍,A與公海相距約為20海里,走私船可能向任一方向逃竄,請回答下列問題:
(1)如果走私船和巡邏艇都是沿直線航行,那么走私船能被截獲的點是哪些?
(2)根據(jù)截獲點的軌跡,探討“可截獲區(qū)域”和“非截獲區(qū)域”.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.關(guān)于x的方程2sinx-cos2x=m的解集是空集,則實數(shù)m的取值范圍是(-∞,-2)∪(2,+∞).

查看答案和解析>>

同步練習冊答案