分析 (Ⅰ)由已知利用三角形面積公式可求a的值,進而利用余弦定理可求c的值.
(Ⅱ)由(Ⅰ)利用余弦定理可求cosB的值,結合范圍B∈(0,π),利用同角三角函數(shù)基本關系式可求sinB,進而利用兩角差的余弦函數(shù)公式計算求值得解.
解答 (本題滿分為12分)
解:(Ⅰ)∵$C=\frac{π}{3},b=8$,△ABC的面積為$10\sqrt{3}$=$\frac{1}{2}$absinC=$\frac{1}{2}×a×8$×sin$\frac{π}{3}$,解得:a=5,
∴由余弦定理可得:c=$\sqrt{{a}^{2}+^{2}-2abcosC}$=$\sqrt{25+64-2×5×8×\frac{1}{2}}$=7…6分
(Ⅱ)∵由(Ⅰ)可得:cosB=$\frac{{a}^{2}+{c}^{2}-^{2}}{2ac}$=$\frac{49+25-64}{70}$=$\frac{1}{7}$,
又∵B∈(0,π),可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{4\sqrt{3}}{7}$,
∴cos(B-C)=cosBcos$\frac{π}{3}$+sinBsin$\frac{π}{3}$=$\frac{4\sqrt{3}}{7}$×$\frac{\sqrt{3}}{2}$+$\frac{1}{7}×\frac{1}{2}$=$\frac{13}{14}$…12分
點評 本題主要考查了三角形面積公式,余弦定理,同角三角函數(shù)基本關系式,兩角差的余弦函數(shù)公式在解三角形中的應用,考查了計算能力和轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:解答題
數(shù)據(jù)編號 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 |
道路里程數(shù)x | 120 | 130 | 140 | 150 | 160 | 170 | 180 | 190 |
汽車保有量y | 144 | 154 | 160 | 168 | 176 | 180 | 186 | 190 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [1,3] | B. | [1,3) | C. | [-3,∞) | D. | (-3,3] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $[kπ-\frac{π}{12},kπ+\frac{5π}{12}](k∈Z)$ | B. | $[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$ | ||
C. | $[kπ-\frac{5π}{24},kπ+\frac{7π}{24}](k∈Z)$ | D. | $[kπ+\frac{7π}{24},kπ+\frac{19π}{24}](k∈Z)$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | 32 | C. | 33 | D. | 34 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {0,1} | B. | {0,-1} | C. | {1,-1} | D. | {-1,0,1} |
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com