(文科)已知橢圓的方程為3x2+y2=18.
(1)求橢圓的焦點坐標及離心率;
(2)求以橢圓的焦點為頂點、頂點為焦點的雙曲線方程.
(1)∵橢圓3x2+y2=18即
x2
6
+
y2
18
=1
,
∴a=3
2
,b=
6

由 c2=a2-b2,得c=2
3
,
∴離心率:e=
c
a
=
2
3
3
2
=
6
3
,
焦點坐標:F1(0,-2
3
),F(xiàn)2(0,2
3

(2)橢圓在y軸上的頂點坐標:(0,3
2
),(0,-3
2
),
焦點坐標:(0,-2
3
),(0,2
3

∴雙曲線的焦點坐標是:(0,3
2
),(0,-3
2
),
頂點為(0,-2
3
),(0,2
3

雙曲線的半實軸長為:2
3
,半虛軸長為:
(3
2
)
2
-(2
3
)
2
=
6

∴雙曲線方程為
y2
12
-
x2
6
=1
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(文科)已知橢圓的方程為3x2+y2=18.
(1)求橢圓的焦點坐標及離心率;
(2)求以橢圓的焦點為頂點、頂點為焦點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓的方程為
x2
m
+y2=1(m>0,m≠1),則該橢圓的焦點坐標為
(0,±
1-m
)或(±
m-1
,0)
(0,±
1-m
)或(±
m-1
,0)

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省寧德市福鼎二中高二(上)第二次月考數(shù)學試卷(文科)(解析版) 題型:解答題

(文科)已知橢圓的方程為3x2+y2=18.
(1)求橢圓的焦點坐標及離心率;
(2)求以橢圓的焦點為頂點、頂點為焦點的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2009-2010學年福建省泉州市泉港五中高二(上)期中數(shù)學試卷(解析版) 題型:解答題

(文科)已知橢圓的方程為3x2+y2=18.
(1)求橢圓的焦點坐標及離心率;
(2)求以橢圓的焦點為頂點、頂點為焦點的雙曲線方程.

查看答案和解析>>

同步練習冊答案