已知曲線C1:y=-x2+4x-2,C2:y2=x,若C1,C2關(guān)于直線l對(duì)稱,則l的方程是( 。
分析:由于若C1,C2關(guān)于直線l對(duì)稱,且相交,故交點(diǎn)一定在對(duì)稱直線上,從而得解.
解答:解:聯(lián)立曲線C1:y=-x2+4x-2,C2:y2=x,可得一個(gè)交點(diǎn)坐標(biāo)為(4,-2),代入驗(yàn)證,可知選B,
故選B.
點(diǎn)評(píng):本題考查對(duì)稱的性質(zhì)與應(yīng)用,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:y=x2與C2:y=-(x-2)2.直線l與C1、C2都相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•浙江)定義:曲線C上的點(diǎn)到直線l的距離的最小值稱為曲線C到直線l的距離,已知曲線C1:y=x2+a到直線l:y=x的距離等于曲線C2:x2+(y+4)2=2到直線l:y=x的距離,則實(shí)數(shù)a=
9
4
9
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線c1:y=ex,曲線c2:y=cosx,則由曲線c1,c2和直線x=
π
2
在第一象限所圍成的封閉圖形的面積為
e
π
2
-2
e
π
2
-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C1:y=x3,曲線C2:y=x3-3x2+3x
(1)求C1:y=x3過點(diǎn)(1,1)的切線方程;
(2)曲線C1經(jīng)過何種變化可得到曲線C2?

查看答案和解析>>

同步練習(xí)冊(cè)答案