20.已知i為虛數(shù)單位,a為實數(shù),復(fù)數(shù)$\overline z$=$\frac{a-3i}{1-i}$在復(fù)平面上對應(yīng)的點在y軸上,則a為( 。
A.-3B.$-\frac{1}{3}$C.$\frac{1}{3}$D.3

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,由已知條件列出方程組,求解即可得答案.

解答 解:$z=\frac{a-3i}{1-i}=\frac{(a-3i)(1+i)}{2}=\frac{a+3-(3-a)i}{2}$,
又復(fù)數(shù)$\overline z$=$\frac{a-3i}{1-i}$在復(fù)平面上對應(yīng)的點在y軸上,
∴$\left\{{\begin{array}{l}{a+3=0,\;\;}\\{3-a≠0,\;\;}\end{array}}\right.$解得a=-3.
故選:A.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

10.某小區(qū)現(xiàn)有一塊草坪ABCD呈平行四邊形形狀,AB=3,AD=2,∠BAD=60°,為了改善居民的生活環(huán)境,決定將原草坪擴建成三角形PAQ形狀,點A,D,P共線,Q,C,P共線,A,B,Q共線,設(shè)AP=x,BQ=y.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)求△APQ面積最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{{\sqrt{2}}}{2}$,左、右焦點分別為F1,F(xiàn)2,四個頂點圍成的四邊形面積為4$\sqrt{2}$.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設(shè)O為坐標原點,過點P(0,1)的動直線與橢圓交于A,B兩點.是否存在常數(shù)λ,使得$\overrightarrow{OA}$•$\overrightarrow{OB}$+λ$\overrightarrow{PA}$•$\overrightarrow{PB}$為定值?若存在,求λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設(shè)函數(shù)f(x)=min{x2-1,x+1,-x+1},其中min{x,y,z}表示x,y,z中的最小者,若f(a+2)>f(a),則實數(shù)a的取值范圍為(-∞,-2)∪(-1,0).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.我國是世界上嚴重缺水的國家,城市缺水尤為突出.某市為了制定合理的節(jié)水方案,從該市隨機調(diào)查了100位居民,獲得了他們某月的用水量,整理得到如圖的頻率分布直方圖.
(Ⅰ)求圖中a的值;
(Ⅱ)設(shè)該市有500萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由:
(Ⅲ)估計本市居民的月用水量平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.若函數(shù)f(x)=$\left\{\begin{array}{l}a{x^2}+bx+c,x≥-1\\ f(-x-4),x<-1\end{array}$,其圖象上點(2,f(2))處的切線方程是y=2x-1,則圖象上點(-6,f(-6))處的切線方程為2x+y+9=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.已知數(shù)列{an}的前n項和為Sn,且滿足數(shù)列{2an}是等比數(shù)列,若a4+a1009+a2014=$\frac{3}{2}$,則S2017的值是$\frac{2017}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知函數(shù)f(log2x)=x2+2x.
(1)求函數(shù)f(x)的解析式;
(2)若方程f(x)=a•2x-4在區(qū)間(0,2)內(nèi)有兩個不相等的實根,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓E的中心在坐標原點,且拋物線x2=-4$\sqrt{5}$y的焦點是橢圓E的一個焦點,以橢圓E的長軸的兩個端點及短軸的一個端點為頂點的三角形的面積為6.
(Ⅰ)求橢圓E的方程;
(Ⅱ)若斜率為$\frac{3}{2}$的直線l與橢圓E交于不同的兩點A、B,又點C($\frac{4}{3}$,2),求△ABC面積最大時對應(yīng)的直線l的方程.

查看答案和解析>>

同步練習冊答案