分析 (1)利用三角恒等變換化簡函數(shù)f(x)的解析式,再利用正弦函數(shù)的單調(diào)性,求得函數(shù)f(x)的單調(diào)減區(qū)間.
(2)利用函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,求得g(x)的解析式,再利用正弦定義域和值域,求得g(x)的值域.
解答 解:(1)函數(shù)$f(x)=2sinxcosx+2\sqrt{3}{cos^2}x-\sqrt{3}$=sin2x+$\sqrt{3}$cos2x=2sin(2x+$\frac{π}{3}$),
∴$當(dāng)2kπ+\frac{π}{2}≤2x+\frac{π}{3}≤\frac{3π}{2}+2kπ,k∈Z時(shí),解得$:$kπ+\frac{π}{12}≤x≤\frac{7π}{12}+kπ,k∈Z$,
因此,函數(shù)f(x)的單調(diào)減區(qū)間為$[kπ+\frac{π}{12},\frac{7π}{12}+kπ](k∈Z)$.
(2)將函數(shù)y=f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位,可得y=2sin(2x+$\frac{π}{3}$+$\frac{π}{3}$)的圖象,
再將所得的圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)=2sin(4x+$\frac{2π}{3}$)的圖象,
∵$x∈({-\frac{π}{12},\frac{π}{8}})$,∴$4x+\frac{2π}{3}∈({\frac{π}{3},\frac{7π}{6}})$,
∴$sin({4x+\frac{2π}{3}})∈({-\frac{1}{2},1}]$,∴y=g(x)的值域?yàn)椋?1,2].
點(diǎn)評(píng) 本題主要考查三角恒等變換,正弦函數(shù)的單調(diào)性函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,正弦定義域和值域,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$i | D. | -$\frac{1}{2}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $(1,2+\frac{2}{e})$ | B. | $(2,2+\frac{2}{e})$ | C. | $(1,1+\frac{1}{e})$ | D. | $(2,2+\frac{1}{e})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}})$ | B. | $({-\frac{{2\sqrt{3}}}{3},\frac{{2\sqrt{3}}}{3}})$ | C. | $({-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $({-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 點(diǎn)P必在直線AC上 | B. | 點(diǎn)P必在直線BD上 | ||
C. | 點(diǎn)P必在平面DBC內(nèi) | D. | 點(diǎn)P必在平面ABC外 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com