若拋物線的焦點(diǎn)是雙曲線的一個(gè)焦點(diǎn),則正數(shù)等于(    )
A.B.C.D.
易求得雙曲線的焦點(diǎn)坐標(biāo)為
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824045308948457.png" style="vertical-align:middle;" />
所以

故選
【考點(diǎn)】拋物線和雙曲線的幾何性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(已知拋物線)的準(zhǔn)線與軸交于點(diǎn)
(1)求拋物線的方程,并寫出焦點(diǎn)坐標(biāo);
(2)是否存在過(guò)焦點(diǎn)的直線(直線與拋物線交于點(diǎn),),使得三角形的面積?若存在,請(qǐng)求出直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓C:=1的離心率為,左焦點(diǎn)為F(-1,0),
(1)設(shè)A,B分別為橢圓的左、右頂點(diǎn),過(guò)點(diǎn)F且斜率為k的直線L與橢圓C交于M,N兩點(diǎn),若,求直線L的方程;
(2)橢圓C上是否存在三點(diǎn)P,E,G,使得SOPE=SOPG=SOEG?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓與直線相切于點(diǎn),與正半軸交于點(diǎn),與直線在第一象限的交點(diǎn)為.點(diǎn)為圓上任一點(diǎn),且滿足,動(dòng)點(diǎn)的軌跡記為曲線

(1)求圓的方程及曲線的方程;
(2)若兩條直線分別交曲線于點(diǎn)、,求四邊形面積的最大值,并求此時(shí)的的值.
(3)證明:曲線為橢圓,并求橢圓的焦點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,設(shè)橢圓的左、右焦點(diǎn)分別為,點(diǎn)在橢圓上,,,的面積為.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)圓心在軸上的圓與橢圓在軸的上方有兩個(gè)交點(diǎn),且圓在這兩個(gè)交點(diǎn)處的兩條切線相互垂直并分別過(guò)不同的焦點(diǎn),求圓的半徑..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知為橢圓的左右焦點(diǎn),點(diǎn)為其上一點(diǎn),且有
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)過(guò)的直線與橢圓交于兩點(diǎn),過(guò)平行的直線與橢圓交于、兩點(diǎn),求四邊形的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

過(guò)拋物線y2=8x的焦點(diǎn)F作傾斜角為135°的直線交拋物線于A,B兩點(diǎn),則弦AB的長(zhǎng)為( 。
A.4B.8C.12D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線的焦點(diǎn)為F,過(guò)F作直線交拋物線于A、B兩點(diǎn),設(shè)(  )
A.4       B.8       C.       D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓M=1(ab>0)的短半軸長(zhǎng)b=1,且橢圓上一點(diǎn)與橢圓的兩個(gè)焦點(diǎn)構(gòu)成的三角形的周長(zhǎng)為6+4.
(1)求橢圓M的方程;
(2)設(shè)直線lxmyt與橢圓M交于AB兩點(diǎn),若以AB為直徑的圓經(jīng)過(guò)橢圓的右頂點(diǎn)C,求t的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案