5.已知f(x)是定義在R上的奇函數(shù),且f(x)=f(x+2),當x∈(0,1)時,f(x)=tan(x-$\frac{π}{6}$),則函數(shù)f(x)在區(qū)間[0,4]上的零點個數(shù)是( 。
A.6B.7C.8D.9

分析 由題意可推出f(x)在[0,4]上的零點為0,2,4,$\frac{π}{6}$,2-$\frac{π}{6}$,4-$\frac{π}{6}$,即可得出結(jié)論.

解答 解:∵當x∈(0,1)時,f(x)=tan(x-$\frac{π}{6}$),
∴f(x)在(0,1)上零點為$\frac{π}{6}$,
又∵函數(shù)f(x)是奇函數(shù),
∴f(x)在(-1,0)上零點為-$\frac{π}{6}$,
又∵f(x+2)=f(x),
∴f(x)在[0,4]上的零點為0,2,4,$\frac{π}{6}$,2-$\frac{π}{6}$,4-$\frac{π}{6}$,
故f(x)在[0,4]上的零點個數(shù)是6;
故選:A.

點評 本題考查了函數(shù)的零點的個數(shù)的判斷,同時考查了函數(shù)的性質(zhì)的綜合應用,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.設(shè)$f(x)=\left\{\begin{array}{l}{x^2}({0≤x<1})\\ 2-x({1≤x≤2})\end{array}\right.$則$\int_0^2{f(x)}dx$等于(  )
A.$\frac{3}{4}$B.$\frac{4}{5}$C.$\frac{5}{6}$D.不存在

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知$f(n)=1+\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}(n∈{N_+})$,用數(shù)學歸納法證明$f({2^n})>\frac{n+1}{2}$時,f(2k+1)-f(2k)等于$\frac{1}{{{2^k}+1}}+\frac{1}{{{2^k}+2}}+…+\frac{1}{{{2^{k+1}}}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.(理科)如圖,在空間四面體ABCD中,若E,F(xiàn),G,H分別是AB,BD,CD,AC的中點,且AD⊥BC
(1)求證:四邊形EFGH是矩形.
(2)求證:AD∥平面EFGH.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.高三年級有8個班級,分派4位數(shù)學老師任教,每個教師教兩個班,則不同的分派方法有( 。
A.${P}_{8}^{2}$${P}_{6}^{2}$${P}_{4}^{2}$${P}_{2}^{2}$B.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$
C.${C}_{8}^{2}$${C}_{6}^{2}$${C}_{4}^{2}$${C}_{2}^{2}$${P}_{4}^{4}$D.$\frac{C_8^2C_6^2C_4^2C_2^2}{4!}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知矩形ABCD中,AB=6,BC=4,E,F(xiàn)分別是AB,CD上兩動點,且AE=DF,把四邊形BCFE沿EF折起,使平面BCFE⊥平面ABCD,若折得的幾何體的體積最大,則該幾何體外接球的體積為( 。
A.28πB.$\frac{{28\sqrt{7}π}}{3}$C.32πD.$\frac{{64\sqrt{2}π}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.已知雙曲線${x^2}-\frac{y^2}{b^2}=1\;(b>0)$的一條漸近線的方程為y=3x,則b=3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知$\overrightarrow{a}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),|$\overrightarrow$|=1,|$\overrightarrow{a}$+2$\overrightarrow$|=2,則$\overrightarrow b$在$\overrightarrow a$方向上的投影為-$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖,正方體ABCD-A1B1C1D1的棱長為a(a>1),動點E,F(xiàn)在棱A1B1上,動點P,Q分別在棱CD,AD上,若EF=1,A1F=x,DP=y,DQ=z(x,y,z均大于零),則四面體PEFQ的體積(  )
A.與x,y,z都有關(guān)B.與x有關(guān),與y,z無關(guān)
C.與y有關(guān),與x,z無關(guān)D.與z有關(guān),與x,y無關(guān)

查看答案和解析>>

同步練習冊答案