(12分).已知圓C: 
直線
(1)證明:不論取何實(shí)數(shù),直線與圓C恒相交;
(2)求直線被圓C所截得的弦長(zhǎng)最小時(shí)直線的方程;
(1)可證明直線L過圓C內(nèi)的定點(diǎn)(3,1)
(2)2X-Y-5=0
本題考查學(xué)生會(huì)求兩直線的交點(diǎn)坐標(biāo),會(huì)利用點(diǎn)到圓心的距離與半徑的大小比較來判斷點(diǎn)與圓的位置關(guān)系,靈活運(yùn)用圓的垂徑定理解決實(shí)際問題,掌握兩直線垂直時(shí)斜率的關(guān)系,會(huì)根據(jù)斜率與一點(diǎn)坐標(biāo)寫出直線的方程,是一道綜合題.
(1)要證直線l無論m取何實(shí)數(shù)與圓C恒相交,即要證直線l橫過過圓C內(nèi)一點(diǎn),方法是把直線l的方程改寫成m(2x+y-7)+x+y-4=0可知,直線l一定經(jīng)過直線2x+y-7=0和x+y-4=0的交點(diǎn),聯(lián)立兩條直線的方程即可求出交點(diǎn)A的坐標(biāo),然后利用兩點(diǎn)間的距離公式求出AC之間的距離d,判斷d小于半徑5,得證;
(2)根據(jù)圓的對(duì)稱性可得過點(diǎn)A最長(zhǎng)的弦是直徑,最短的弦是過A垂直于直徑的弦,所以連接AC,過A作AC的垂線,此時(shí)的直線與圓C相交于B、D,弦BD為最短的弦,接下來求BD的長(zhǎng),根據(jù)垂徑定理可得A是BD的中點(diǎn),利用(1)圓心C到BD的距離其實(shí)就是|AC|的長(zhǎng)和圓的半徑|BC|的長(zhǎng),根據(jù)勾股定理可求出12
|BD|的長(zhǎng),求得|BD|的長(zhǎng)即為最短弦的長(zhǎng);根據(jù)點(diǎn)A和點(diǎn)C的坐標(biāo)求出直線AC的斜率,然后根據(jù)兩直線垂直時(shí)斜率乘積為-1求出直線BD的斜率,又直線BD過A(3,1),根據(jù)斜率與A點(diǎn)坐標(biāo)即可寫出直線l的方程.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知與圓C:x2+y2-2x-2y+1=0相切的直線l交x軸,y軸于A,B兩點(diǎn),
OA|=a,|OB|=b(a>2,b>2).
(Ⅰ)求證:(a-2)(b-2)=2;
(Ⅱ)求線段AB中點(diǎn)的軌跡方程;
(Ⅲ)求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)平面直角坐標(biāo)系中,設(shè)二次函數(shù)的圖象與兩坐標(biāo)軸有三個(gè)交點(diǎn),經(jīng)過這三個(gè)交點(diǎn)的圓記為C.求:
(Ⅰ)求實(shí)數(shù)b 的取值范圍;
(Ⅱ)求圓C 的方程;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.直線3x-4y-4=0被圓(x-3)2+y2=9截得的弦長(zhǎng)為(  )
A.B.4C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線過點(diǎn)與圓相切,
(1)求該圓的圓心坐標(biāo)及半徑長(zhǎng)
(2)求直線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

過點(diǎn)作兩條直線,斜率分別為1,,已知與圓交于不同的兩點(diǎn),與圓交于不同的兩點(diǎn),
.
(Ⅰ)求:所滿足的約束條件;
(Ⅱ)求:的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在極坐標(biāo)系中,已知圓C的圓心,半徑r=2,Q點(diǎn)在圓C上運(yùn)動(dòng)。
(I)求圓C的極坐標(biāo)方程;
(II)若P在直線OQ上運(yùn)動(dòng),且OQ∶OP=3∶2,求動(dòng)點(diǎn)P的軌跡方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線過圓的圓心,則的值為 (   )
A.1B.1 C.3 D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

點(diǎn)P在橢圓上運(yùn)動(dòng),Q、R分別在兩圓上運(yùn)動(dòng),則的最大值為(   )     
A.3B.4C.5D.6

查看答案和解析>>

同步練習(xí)冊(cè)答案