分析:(I)把a(bǔ)=1代入函數(shù)f(x),對(duì)f(x)進(jìn)行求導(dǎo)得到極值,求出單調(diào)區(qū)間,從而求出最值;
(Ⅱ)已知在區(qū)間(1,+∞)上,函數(shù)h(x)=f(x)+21nx(a∈R)的圖象恒在直線y=2ax的下方,將問(wèn)題轉(zhuǎn)化為對(duì)任意x∈(1,+∞),不等式(a-
)x
2+lnx-2a<0恒成立,只要求出(a-
)x
2+lnx-2a的最大值小于0即可,我們可以令一個(gè)新的函數(shù),然后利用導(dǎo)數(shù)研究其最值問(wèn)題,從而求解;
解答:解:(I)當(dāng)a=1時(shí),f(x)=
x
2-lnx(a∈R)
f′(x)=x-
=
(x>0)
當(dāng)x∈(0,1),f′(x)<0,f(x)為減函數(shù);
當(dāng)x∈(1,e],f′(x)>0,f(x)為增函數(shù);
∴函數(shù)f(x)在區(qū)間(0,1]上單調(diào)遞減,在(1,e],上單調(diào)遞增,
則當(dāng)x∈(0,e]上,f(x)
min=f(1)=
;
(Ⅱ)在區(qū)間(1,+∞)上,函數(shù)h(x)=f(x)+21nx(a∈R)的圖象恒在直線y=2ax的下方,
等價(jià)于對(duì)任意x∈(1,+∞),不等式(a-
)x
2+lnx-2a<0恒成立,
設(shè)g(x)=(a-
)x
2+lnx-2a,x∈(1,+∞),
則g′(x)=(2a-1)x-2a+
=(x-1)(2a-1-
)
當(dāng)x∈(1,+∞),時(shí),x-1>0,0<
<1,
①若2a-1≤0,即a
≤,g′(x)<0,函數(shù)g(x)在區(qū)間[1,+∞)上位減函數(shù),
則當(dāng)?x∈(1,+∞)時(shí),g(x)<g(1)=a-
-2a=-
-a,只需要
-
-a≤0,即當(dāng)-
≤a≤
時(shí),g(x)=(a-
)x
2+lnx-2ax<0恒成立;
②若0<2a-1<1,即
<a<1時(shí),令g′(x)=(x-1)(2a-1-
)=0,
得x=
>1,函數(shù)g(x)在區(qū)間(1,
)為減函數(shù),在(
,+∞)上位增函數(shù),
則g(x)∈(g(
),+∞),不合題意;
③若2a-1≥1即當(dāng)a≥1時(shí),g′(x)>0,函數(shù)g(x)在區(qū)間(1,+∞)為增函數(shù),則g(x)∈(g(1),+∞),不合題意,
綜上可知當(dāng)-
≤a
≤時(shí),g(x)=(a-
)x
2+lnx-2ax<0恒成立;
即當(dāng)-
≤a
≤時(shí),在區(qū)間(1,+∞)上函數(shù)f(x)的圖象恒在直線y=2ax的下方;