在△ABC中,a,b,c成等比數(shù)列,且a2-c2=ac-bc,則
bsinB
c
=
3
2
3
2
分析:可得b2=ac 代入可得a2=b2+c2-bc,進(jìn)而根據(jù)余弦定理求得cosA的值,進(jìn)而求得A的值.再把b2=ac和A的值代入正弦定理,即可求解.
解答:解:由題意可得b2=ac,又a2-c2=ac-bc,
故a2-c2=b2-bc,即a2=c2+b2-bc,
由余弦定理可知a2=c2+b2-2bccosA,
故可得cosA=
1
2
,A=60°
在△ABC中,由正弦定理得sinB=
bsinA
a

所以
bsinB
c
=
b2sinA
ac
=
acsinA
ac
=sinA=
3
2

故答案為:
3
2
點(diǎn)評:本題考查等比數(shù)列的性質(zhì)和正弦定理及余弦定理的運(yùn)用,通過邊和角的互化,達(dá)到解題的目的,屬中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A、∠B、∠C所對的邊長分別是a、b、c.滿足2acosC+ccosA=b.則sinA+sinB的最大值是(  )
A、
2
2
B、1
C、
2
D、
1+
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a<b<c,B=60°,面積為10
3
cm2,周長為20cm,求此三角形的各邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別為角A,B,C的對邊,已知
.
m
=(cos
C
2
,sin
C
2
)
,
.
n
=(cos
C
2
,-sin
C
2
)
,且
m
n
=
1
2

(1)求角C;
(2)若a+b=
11
2
,△ABC的面積S=
3
3
2
,求邊c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,A,B,C為三個內(nèi)角,若cotA•cotB>1,則△ABC是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知y=f(x)函數(shù)的圖象是由y=sinx的圖象經(jīng)過如下三步變換得到的:
①將y=sinx的圖象整體向左平移
π
6
個單位;
②將①中的圖象的縱坐標(biāo)不變,橫坐標(biāo)縮短為原來的
1
2
;
③將②中的圖象的橫坐標(biāo)不變,縱坐標(biāo)伸長為原來的2倍.
(1)求f(x)的周期和對稱軸;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,且f(C)=2,c=1,ab=2
3
,且a>b,求a,b的值.

查看答案和解析>>

同步練習(xí)冊答案