設F1、F2分別是橢圓數(shù)學公式的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為________.

4
分析:由題意知,OM是三角形PF1P的中位線,由|OM|=3,可得|PF2|=6,再由橢圓的定義求出|PF1|的值.
解答:由題意知,OM是三角形PF1P的中位線,
∵|OM|=3,∴|PF2|=6,
又|PF1|+|PF2|=2a=10,
∴|PF1|=4,
故答案為4.
點評:本題考查橢圓的定義,以及橢圓的簡單性質的應用,判斷OM是三角形PF1P的中位線是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
短軸長為2,P(x0,y0)(x0≠±a)是橢圓上一點,A,B分別是橢圓的左、右頂點,直線PA,PB的斜率之積為-
1
4

(1)求橢圓的方程;
(2)當∠F1PF2為鈍角時,求P點橫坐標的取值范圍;
(3)設F1,F(xiàn)2分別是橢圓的左右焦點,M、N是橢圓右準線l上的兩個點,若
F1M
F2N
=0
,求MN的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年豐臺區(qū)二模)(14分)

設F1、F2分別是橢圓的左、右焦點。

   (I)若M是該橢圓上的一個動點,求的最大值和最小值;

    (II)設過定點(0,2)的直線l與橢圓交于不同兩點A、B,且∠AOB為鈍角(其中O為坐標原點),求直線l的斜率k的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設F1、F2分別是橢圓的左、右焦點,P為橢圓上一點,M是F1P的中點,|OM|=3,則P點到橢圓左焦點距離為                           .

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆江西省高二第四次月考文科數(shù)學試卷(解析版) 題型:填空題

設F1、F2分別是橢圓的左、右焦點,P為橢圓上任一點,點M的坐標為(6,4),則|PM|+|PF1|的最大值為_______

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年黑龍江省哈爾濱市高三上學期期中考試文科數(shù)學卷 題型:選擇題

設F1,F(xiàn)2分別是橢圓的左、右焦點,P是第一象限內該橢圓上的一點,且,求點P的橫坐標為(    )

A.1                B.               C.             D.

 

查看答案和解析>>

同步練習冊答案