精英家教網 > 高中數學 > 題目詳情
[選做題]已知二階矩陣M屬于特征值3的一個特征向量為,并且矩陣M對應的變換將點(-1,2)變成點(9,15),求出矩陣M.
【答案】分析:先設矩陣 ,這里a,b,c,d∈R,由二階矩陣M有特征值λ=3及對應的一個特征向量e1及矩陣M對應的變換將點(-1,2)變成點(9,15),得到關于a,b,c,d的方程組,即可求得矩陣M.
解答:解:設
由題意有,
,且
,
解得

點評:本題主要考查了二階矩陣,以及特征值與特征向量的計算,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

本題共有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則以所做的前2題計分.
(1)選修4-2:矩陣與變換
已知二階矩陣M有特征值λ=3及對應的一個特征向量e1=
1
1
,并且矩陣M對應的變換將點(-1,2)變換成(9,15).求矩陣M.
(2)選修4-4:坐標系與參數方程
在直角坐標系xOy中,已知曲線C的參數方程是
x=2+2sinα
y=2cosα
(α是參數).
現以原點O為極點,x軸的正半軸為極軸,建立極坐標系,寫出曲線C的極坐標方程.
(3)選修4-5:不等式選講
解不等式|2x+1|-|x-4|>2.

查看答案和解析>>

科目:高中數學 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每題7分,請考生任選2題作答,滿分14分.如果多做,則按所做的前兩題記分,作答時,先在答題卡上把所選題目對應的題號填入括號中.
(1)選修4-2:矩陣與變換
已知二階矩陣M=
a1
3d
有特征值λ=-1及對應的一個特征向量e1=
1
-3

(Ⅰ)求距陣M;
(Ⅱ)設曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.
(2)選修4-4:坐標系與參數方程
在直角坐標系xOy中,曲線C的參數方程為
x=2+t
y=t+1
(t
為參數),曲線P在以該直角坐標系的原點O的為極點,x軸的正半軸為極軸的極坐標系下的方程為p2-4pcosθ+3=0.
(Ⅰ)求曲線C的普通方程和曲線P的直角坐標方程;
(Ⅱ)設曲線C和曲線P的交點為A、B,求|AB|.
(3)選修4-5:不等式選講
已知函數f(x)=|x+1|+|x-2|,不等式t≤f(x)在x∈R上恒成立.
(Ⅰ)求實數t的取值范圍;
(Ⅱ)記t的最大值為T,若正實數a、b、c滿足a2+b2+c2=T,求a+2b+c的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

[選做題]已知二階矩陣M屬于特征值3的一個特征向量為
e
=
1
1
,并且矩陣M對應的變換將點(-1,2)變成點(9,15),求出矩陣M.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

[選做題]已知二階矩陣M屬于特征值3的一個特征向量為
e
=
1
1
,并且矩陣M對應的變換將點(-1,2)變成點(9,15),求出矩陣M.

查看答案和解析>>

同步練習冊答案