使奇函數(shù)f(x)=sin(2x+θ)+
3
cos(2x+θ)在[-
π
4
,0]上為減函數(shù)的θ值為( 。
A.-
π
3
B.-
π
6
C.
6
D.
3
由已知得:f(x)=2sin(2x+θ+
π
3
),
由于函數(shù)為奇函數(shù),
故有θ+
π
3
=kπ
即:θ=kπ-
π
3
(k∈Z),可淘汰B、C選項
然后分別將A和D選項代入檢驗,
易知當(dāng)θ=
3
時,
f(x)=-2sin2x其在區(qū)間[-
π
4
,0]上遞減,故選D、
故答案為:D
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含有2個元素,則ω的取值范圍是__________________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含有2個元素,則ω的取值范圍是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省荊州市公安三中高三(上)數(shù)學(xué)積累測試卷07(解析版) 題型:填空題

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省連云港市高考數(shù)學(xué)模擬試卷(5)(解析版) 題型:解答題

ω是正實數(shù),設(shè)Sω={θ|f(x)=cos[ω(x+θ)]是奇函數(shù)},若對每個實數(shù)a,Sω∩(a,a+1)的元素不超過2個,且有a使Sω∩(a,a+1)含2個元素,則ω的取值范圍是   

查看答案和解析>>

同步練習(xí)冊答案