已知為數(shù)列的前項(xiàng)和,且.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前n項(xiàng)和.
(Ⅰ);(Ⅱ) .
解析試題分析:(Ⅰ)由數(shù)列的遞推公式求數(shù)列通項(xiàng)公式;(Ⅱ)根據(jù)(Ⅰ)通項(xiàng)公式得,再得,從而得的通項(xiàng)公式,進(jìn)而求得.
試題解析:解:(Ⅰ),當(dāng)時(shí),,
兩式相減得, 3分
又當(dāng)時(shí),, 4分
數(shù)列是首項(xiàng)為2,公比為3的等比數(shù)列, 6分
數(shù)列的通項(xiàng)公式是.
(Ⅱ)由可得,, 8分
, 10分
. 12分
考點(diǎn):1、數(shù)列的遞推公式;2、通項(xiàng)公式;3、前n項(xiàng)和公式.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等比數(shù)列{an}的前n項(xiàng)和為Sn.已知an+1=2Sn+2()
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)在an與an+1之間插入n個(gè)數(shù),使這n+2個(gè)數(shù)組成一個(gè)公差為dn的等差數(shù)列,
①在數(shù)列{dn}中是否存在三項(xiàng)dm,dk,dp(其中m,k,p成等差數(shù)列)成等比數(shù)列?若存在,求出這樣的三項(xiàng),若不存在,說明理由;
②求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)同時(shí)滿足:
①不等式的解集有且只有一個(gè)元素;
②在定義域內(nèi)存在,使得不等式成立.
數(shù)列的通項(xiàng)公式為.
(1)求函數(shù)的表達(dá)式;
(2)求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前項(xiàng)和,滿足:.
(Ⅰ)求數(shù)列的通項(xiàng);
(Ⅱ)若數(shù)列的滿足,為數(shù)列的前項(xiàng)和,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)為數(shù)列{}的前項(xiàng)和,已知,2,N
(Ⅰ)求,,并求數(shù)列{}的通項(xiàng)公式;
(Ⅱ)求數(shù)列{}的前項(xiàng)和。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列的前n項(xiàng)和為,點(diǎn)在直線上.數(shù)列{bn}滿足,前9項(xiàng)和為153.
(Ⅰ)求數(shù)列、的通項(xiàng)公式;
(Ⅱ)設(shè),數(shù)列的前n和為,求使不等式對(duì)一切都成立的最大正整數(shù)k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)等差數(shù)列的前n項(xiàng)和為,已知, .
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè)數(shù)列的前n項(xiàng)和為,證明:;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足:,數(shù)列滿足.
(1)若是等差數(shù)列,且求的值及的通項(xiàng)公式;
(2)若是公比為的等比數(shù)列,問是否存在正實(shí)數(shù),使得數(shù)列為等比數(shù)列?若存在,求出的值;若不存在,請(qǐng)說明理由;
(3)若是等比數(shù)列,求的前項(xiàng)和(用n,表示).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com