試求滿足不等式2(log0.5x)2+9log0.5x+9≤0的x的范圍.

解析:把log0.5x看作一個變量t,原不等式即變?yōu)殛P(guān)于t的一元二次不等式,可求出t的取值范圍,進(jìn)而再求出x的取值范圍.

解:令t=log0.5x,則原不等式可化為2t2+9t+9≤0,解得-3≤t≤-,

    即-3≤log0.5x≤-.又-3=log0.50.5-3,-=.

≤x≤0.5-3,即2≤x≤8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
a1
=
1
1
,屬于特征值1的一個特征向量為
a2
=
3
-2
,求矩陣A.
(2)選修4-4:坐標(biāo)與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為psin(θ-
π
3
)=6,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè) A、B、C是直線l上的三點(diǎn),向量
OA
,
OB
OC
滿足關(guān)系:
OA
+(y-
3
sinxcosx)
OB
-(
1
2
+sin2x)
OC
=
0

(Ⅰ)化簡函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)若函數(shù)g(x)=f(
1
2
x+
π
3
)
x∈[0,
12
]
的圖象與直線y=b的交點(diǎn)的橫坐標(biāo)成等差數(shù)列,試求實(shí)數(shù)b的值;
(Ⅲ)令函數(shù)h(x)=
2
(sinx+cosx)+sin2x-a,若對任意的x1x2∈[0,
π
2
]
,不等式h(x1)≤f(x2)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實(shí)數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點(diǎn);②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

(哈爾濱九中模擬)已知滿足,,,當(dāng)的坐標(biāo)為(1,-1)時.

(1)求過點(diǎn),的直線方程;

(2)試用數(shù)學(xué)歸納法證明:對于,點(diǎn)都在(1)中的直線l上;

(3)試求使不等式對于所有成立的最大實(shí)數(shù)k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省協(xié)作校聯(lián)考高三(上)期末數(shù)學(xué)試卷(解析版) 題型:解答題

(1)選修4-2:矩陣與變換
已知矩陣,若矩陣A屬于特征值6的一個特征向量為,屬于特征值1的一個特征向量為,求矩陣A.
(2)選修4-4:坐標(biāo)與參數(shù)方程
以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為psin()=6,圓C的參數(shù)方程為,(θ為參數(shù)),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實(shí)數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

同步練習(xí)冊答案