在利用導(dǎo)函數(shù)判斷函數(shù)單調(diào)性的方法中,(x)>0是f(x)在區(qū)間Ⅰ上為增函數(shù)的充要條件嗎?

答案:
解析:

  解析:在區(qū)間Ⅰ內(nèi)(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件.例如:f(x)=x3在區(qū)間(-∞,+∞)內(nèi)是增函數(shù),但(0)=0,即函數(shù)f(x)在(a,b)內(nèi)(x)≥0(或(x)≤0)(其中有限個(gè)點(diǎn)(x)=0),則函數(shù)f(x)在(a,b)內(nèi)仍是增函數(shù)(或減函數(shù)).

  點(diǎn)評(píng):從這個(gè)問(wèn)題我們可以看出:如果f(x)在某區(qū)間單調(diào)遞增,那么在該區(qū)間上必有(x)≥0.注意等號(hào)是可以取到的.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年新疆烏魯木齊市高三上學(xué)期第一次月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

利用導(dǎo)數(shù),可以判斷函數(shù)在下列哪個(gè)區(qū)間內(nèi)是增函數(shù)(    )

A.     B.  

C.    D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年全國(guó)普通高等學(xué)校招生統(tǒng)一考試文科數(shù)學(xué)(湖南卷解析版) 題型:解答題

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而,

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類(lèi)討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年新疆烏魯木齊一中高三第一次月考文科數(shù)學(xué)試卷 題型:選擇題

利用導(dǎo)數(shù),可以判斷函數(shù)在下列哪個(gè)區(qū)間內(nèi)是增函數(shù)(    )

A.                                                      B.

 

C.                                                      D.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案