證明(n+1)(n+2)…(n+n)=2n·1·3…(2n-1),其中n∈N*

答案:
解析:

  證明:(1)當n=1時,左邊=1+1=2,右邊=21·1=2,等式成立.

  (2)假設當n=k時,等式成立,即(k+1)(k+2)…(k+k)=2k·1·3…(2k-1).

  則當n=k+1時,

  (k+1+1)(k+1+2)…(k+1+k-1)(k+1+k)(k+1+k+1)

 。(k+2)(k+3)…(k+k)(2k+1)(2k+2)

 。(k+1)(k+2)…(k+k)·2(2k+1)

 。2k·1·3…(2k-1)·2(2k+1)

 。2k+1·1·3…(2k-1)(2k+1)

  即當n=k+1時,等式也成立.

  由(1)、(2)可知,對一切n∈N*,等式成立.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•黃浦區(qū)二模)對n∈N*,定義函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n.
(1)求證:y=fn(x)圖象的右端點與y=fn+1(x)圖象的左端點重合;并回答這些端點在哪條直線上.
(2)若直線y=knx與函數(shù)fn(x)=-(x-n)2+n,n-1≤x≤n(n≥2,n∈N*)的圖象有且僅有一個公共點,試將kn表示成n的函數(shù).
(3)對n∈N*,n≥2,在區(qū)間[0,n]上定義函數(shù)y=f(x),使得當m-1≤x≤m(n∈N*,且m=1,2,…,n)時,f(x)=fm(x).試研究關于x的方程f(x)=fn(x)(0≤x≤n,n∈N*)的實數(shù)解的個數(shù)(這里的kn是(2)中的kn),并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明“1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
”時,由n=k的假設證明n=k+1時,如果從等式左邊證明右邊,則必須證得右邊為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設數(shù)列{an}的前n項和為Sn,且Sn=(1+λ)-λan,其中λ為常數(shù),且λ≠-1,0,n∈N+
(1)證明:數(shù)列{an}是等比數(shù)列.
(2)設數(shù)列{an}的公比q=f(λ),數(shù)列{bn}滿足b1=
1
2
,bn=f(bn-1)(n∈N+,n≥2),求數(shù)列{bn}的通項公式.
(3)設λ=1,Cn=an(
1
bn
-1)
,數(shù)列{Cn}的前n項和為Tn,求證:當n≥2時,2≤Tn<4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用數(shù)學歸納法證明“當n 為正奇數(shù)時,xn+yn能被x+y整除”,在第二步時,正確的證法是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:013

某學生在證明等差數(shù)列前n項和公式時,證法如下:

(1)當n=1時,S1=a1顯然成立.

(2)假設n=k時,公式成立,即

Sk=ka1+,

當n=k+1時,

Sk+1=a1+a2+…+ak+ak+1

=a1+(a1+d)+(a1+2d)+…+a1+(k-1)d+a1+kd

=(k+1)a1+(d+2d+…+kd)

=(k+1)a1+d

=(k+1)a1+d.

∴n=k+1時公式成立.

∴由(1)(2)可知對n∈N+,公式成立.

以上證明錯誤的是( 。

A.當n取第一個值1時,證明不對

B.歸納假設寫法不對

C.從n=k到n=k+1的推理中未用歸納假設

D.從n=k到n=k+1的推理有錯誤

查看答案和解析>>

同步練習冊答案