已知:f(x)=x2+px+q.求證:
(1)f(1)+f(3)-2f(2)=2;
(2)|f(1)|,|f(2)|,|f(3)|中至少有一個(gè)不小于
12
分析:(1)根據(jù)函數(shù)f(x)的解析式,分別將x=1,2,3代入求得f(1),f(3),f(2),進(jìn)而求得f(1)+f(3)-2f(2);
(1)“至少有一個(gè)不小于”的反面情況較簡(jiǎn)單,比較方便證明,故從反面進(jìn)行證明,用反證法.
解答:證明:(1)∵f(x)=x2+px+q
∴f(1)=1+p+qf(2)=4+2p+qf(3)=9+3p+q
所以f(1)+f(3)-2f(2)
=(1+p+q)+(9+3p+q)-2(4+2p+q)
=2;
(2)假設(shè)|f(1)|,|f(2)|,|f(3)|都小于
1
2
,
|f(1)|<
1
2
,|f(2)|<
1
2
,|f(3)|<
1
2

即有-
1
2
<f(1)<
1
2
-
1
2
<f(2)<
1
2
-
1
2
<f(3)<
1
2

∴-2<f(1)+f(3)-2f(2)<2
由(1)可知f(1)+f(3)-2f(2)=2,
與-2<f(1)+f(3)-2f(2)<2矛盾,
∴假設(shè)不成立,即原命題成立.
點(diǎn)評(píng):反證法是一種從反面的角度思考問題的證明方法,體現(xiàn)的原則是正難則反.反證法的基本思想:否定結(jié)論就會(huì)導(dǎo)致矛盾,證題模式可以簡(jiǎn)要的概括為“否定→推理→否定”.實(shí)施的具體步驟是:
第一步,反設(shè):作出與求證結(jié)論相反的假設(shè);
第二步,歸謬:將反設(shè)作為條件,并由此通過一系列的正確推理導(dǎo)出矛盾;
第三步,結(jié)論:說明反設(shè)不成立,從而肯定原命題成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-alnx,g(x)=x-a
x

(1)若a∈R,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)在(1,2)上是增函數(shù),g(x)在(0,1)上為減函數(shù),求f(x),g(x)的表達(dá)式;
(3)對(duì)于(2)中的f(x),g(x),求證:當(dāng)x>0時(shí),方程f(x)=g(x)+2有唯-解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•宜春一模)已知方程f(x)=x2+ax+2b的兩根分別在(0,1),(1,2)內(nèi),則f(3)的取值范圍( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•松江區(qū)三模)已知函數(shù)f(x)=x2+3x,數(shù)列{an}的前n項(xiàng)和為Sn,且對(duì)一切正整數(shù)n,點(diǎn)Pn(n,Sn)都在函數(shù)f(x)的圖象上.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)A={x|x=an,n∈N*},B={x|x=2(an-1),n∈N*},等差數(shù)列{bn}的任一項(xiàng)bn∈A∩B,其中b1是A∩B中最的小數(shù),且88<b8<93,求{bn}的通項(xiàng)公式;
(3)設(shè)數(shù)列{cn}滿足cn=
nan-1
,是否存在正整數(shù)p,q(1<p<q),使得c1,cp,cq成等比數(shù)列?若存在,求出所有的p,q的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•貴陽二模)已知函數(shù)f(x)=
-x2+1   ,x<1
log2x   ,x≥1
,若f(a)=1,則a=
0或2
0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•豐臺(tái)區(qū)一模)已知函數(shù)f(x)=x2+x,f'(x)為函數(shù)f(x)的導(dǎo)函數(shù).
(Ⅰ)若數(shù)列{an}滿足an+1=f'(an),且a1=1,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=b,bn+1=f(bn).
(。┦欠翊嬖趯(shí)數(shù)b,使得數(shù)列{bn}是等差數(shù)列?若存在,求出b的值;若不存在,請(qǐng)說明理由;
(ⅱ)若b>0,求證:
n
i=1
bi
bi+1
1
b

查看答案和解析>>

同步練習(xí)冊(cè)答案