已知a<2,.(注:e是自然對數(shù)的底)
(1)求f(x)的單調區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實數(shù)a的取值范圍.
【答案】分析:(1)確定函數(shù)的定義域,求導函數(shù),再分類討論,利用導數(shù)的正負,可得f(x)的單調區(qū)間;
(2)由題意,存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,等價于對任意x1∈[e,e2]及x2∈[-2,0],f(x)min<g(x)min,確定函數(shù)的單調性,求出最值,即可求得實數(shù)a的取值范圍.
解答:解:(1)由題意可得f(x)的定義域為(0,+∞),
∵a<2,∴a-1<1
①當a-1≤0,即a≤1,∴x∈(0,1)時,f′(x)<0,f(x)是減函數(shù),x∈(1,+∞)時,f′(x)>0,f(x)是增函數(shù);
②當0<a-1<1,即1<a<2,∴x∈(0,a-1)∪(1,+∞)時,f′(x)>0,f(x)是增函數(shù),x∈(a-1,1)時,f′(x)<0,f(x)是減函數(shù);
綜上所述,當a≤1時,f(x)的單調減區(qū)間是(0,1),單調增區(qū)間是(1,+∞);當1<a<2時,f(x)的單調減區(qū)間是(a-1,1),單調增區(qū)間是(0,a-1),(1,+∞);
(2)由題意,存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,等價于對任意x1∈[e,e2]及x2∈[-2,0],f(x)min<g(x)min
由(1),當a<2,x1∈[e,e2]時,f(x)是增函數(shù),f(x)min=f(e)=
∵g′(x)=x(1-ex),對任意的x2∈[-2,0],g′(x)≤0
∴g(x)是奇函數(shù),∴g(x)min=g(0)=1


∵a<2

點評:本題考查導數(shù)知識的運用,考查函數(shù)的單調性,考查函數(shù)的最值,考查分類討論的數(shù)學思想,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

下列命題(i為虛數(shù)單位)中正確的是
①已知a,b∈R,則a=b是(a-b)+(a+b)i為純虛數(shù)的充要條件;
②當z是非零實數(shù)時,|z+
1
z
|≥2恒成立;
③復數(shù)z=(1-i)3的實部和虛部都是-2;
④如果|a+2i|<|-2+i|,則實數(shù)a的取值范圍是-1<a<1;
⑤復數(shù)z=1-i,則
1
z
+z=
3
2
+
1
2
i
其中正確的命題的序號是
②③④
②③④
.(注:把你認為正確的命題的序號都填上).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•湛江二模)已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然對數(shù)的底)
(1)求f(x)的單調區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知a<2,f(x)=x-alnx-
a-1
x
,g(x)=
1
2
x2+ex-xex
.(注:e是自然對數(shù)的底)
(1)求f(x)的單調區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省湛江市高考數(shù)學二模試卷(文科)(解析版) 題型:解答題

已知a<2,.(注:e是自然對數(shù)的底)
(1)求f(x)的單調區(qū)間;
(2)若存在x1∈[e,e2],使得對任意的x2∈[-2,0],f(x1)<g(x2)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案