已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.
(1);(2)恒過一定點.

試題分析:(1)可設橢圓方程為,因為橢圓的一個焦點恰好與拋物線的焦點重合,所以,又,所以,又因,得,所以橢圓方程為;
(2)由(1)知,當直線的斜率不存在時,可設,設,則,
易得,不合題意;故直線的斜率存在.設直線的方程為:,(),并代入橢圓方程,得: ①,設,則是方程①的兩根,由韋達定理,由,利用韋達定理代入整理得,又因為,所以,此時直線的方程為,即可得出直線的定點坐標.
(1)由題意可設橢圓方程為,
因為橢圓的一個焦點恰好與拋物線的焦點重合,所以,
,所以,
又因,得,
所以橢圓方程為;    
(2)由(1)知
當直線的斜率不存在時,設,設,則,
,不合題意.
故直線的斜率存在.設直線的方程為:,(),并代入橢圓方程,得:
 ①
 ②
,則是方程①的兩根,由韋達定理
,
得:
,
,整理得
,
又因為,所以,此時直線的方程為.
所以直線恒過一定點     
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的一個焦點為,離心率為.
(1)求橢圓的標準方程;
(2)若動點為橢圓外一點,且點到橢圓的兩條切線相互垂直,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的焦點坐標為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓,、是橢圓的左右焦點,且橢圓經(jīng)過點.
(1)求該橢圓方程;
(2)過點且傾斜角等于的直線,交橢圓于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(2011•浙江)設F1,F(xiàn)2分別為橢圓+y2=1的焦點,點A,B在橢圓上,若=5;則點A的坐標是 _________ 

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過點作傾斜角為的直線與曲線C交于不同的兩點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(2013•浙江)如圖,點P(0,﹣1)是橢圓C1+=1(a>b>0)的一個頂點,C1的長軸是圓C2:x2+y2=4的直徑,l1,l2是過點P且互相垂直的兩條直線,其中l(wèi)1交圓C2于A、B兩點,l2交橢圓C1于另一點D.
(1)求橢圓C1的方程;
(2)求△ABD面積的最大值時直線l1的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的左、右焦點為,過作直線交C于A,B兩點,若是等腰直角三角形,且,則橢圓C的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

橢圓的右焦點為,橢圓軸正半軸交于點,與軸正半軸交于,且,則橢圓的方程為(  )
A.B.
C.D.

查看答案和解析>>

同步練習冊答案