(2012•石家莊一模)有一批貨物需要用汽車從生產(chǎn)商所在城市甲運至銷售商所在城市乙,已知從城市甲到城市乙只有兩條公路,且通過這兩條公路所用的時間互不影響.
據(jù)調(diào)查統(tǒng)計,通過這兩條公路從城市甲到城市乙的200輛汽車所用時間的頻數(shù)分布如下表:
所用的時間(天數(shù)) 10 11 12 13
通過公路1的頻數(shù) 20 40 20 20
通過公路2的頻數(shù) 10 40 40 10
假設汽車A只能在約定日期(某月某日)的前11天出發(fā),汽車B只能在約定日期的前12天出發(fā).
(I)為了盡最大可能在各自允許的時間內(nèi)將貨物運往城市乙,估計汽車A和汽車B應如何選擇各自的路徑;
(II)若通過公路1、公路2的“一次性費用”分別為3.2萬元、1.6萬元(其它費用忽略不計),此項費用由生產(chǎn)商承擔.如果生產(chǎn)商恰能在約定日期當天將貨物送到,則銷售商一次性支付給生產(chǎn)商40萬元,若在約定日期前送到,每提前一天銷售商將多支付給生產(chǎn)商2萬元;若在約定日期后送到,每遲到一天,銷售商將少支付給生產(chǎn)商2萬元.如果汽車A、B長期按(I)所選路徑運輸貨物,試比較哪輛汽車為生產(chǎn)商獲得的毛利潤更大.
(注:毛利潤=(銷售商支付給生產(chǎn)商的費用)-(一次性費用))
分析:(I)求出頻率分布表,計算汽車A在約定日期(某月某日)的前11天出發(fā)選擇公路1,2將貨物運往城市乙的概率;汽車B在約定日期(某月某日)的前12天出發(fā)選擇公路1,2將貨物運往城市乙的概率,即可得到結論;
(II)分別確定汽車A、B為生產(chǎn)商獲得毛利潤的概率分布列,求出期望,比較期望值,即可得到結論.
解答:解:(I)頻率分布表,如下:
所用的時間(天數(shù)) 10 11 12 13
通過公路1的頻數(shù) 0.2 0.4 0.2 0.2
通過公路2的頻數(shù) 0.1 0.4 0.4 0.1
設A1,A2分別表示汽車A在約定日期(某月某日)的前11天出發(fā)選擇公路1,2將貨物運往城市乙;B1,B2分別表示汽車B在約定日期(某月某日)的前12天出發(fā)選擇公路1,2將貨物運往城市乙.
∵P(A1)=0.2+0.4=0.6,P(A2)=0.1+0.4=0.5,∴汽車A選擇公路1,
∵P(B1)=0.2+0.4+0.2=0.8,P(B2)=0.1+0.4+0.4=0.9,∴汽車A選擇公路2;
(II)設X表示汽車A選擇公路1,銷售商支付給生產(chǎn)商的費用,則X=42,40,38,36
X的分布列如下:
 X  42  40  38 36 
 P  0.2  0.4  0.2  0.2
∴E(X)=42×0.2+40×0.4+38×0.2+36×0.2=39.2
∴汽車A選擇公路1時的毛利潤為39.2-3.2=36.0(萬元)
設Y為汽車B選擇公路2時的毛利潤,則Y=42.4,40.4,38.4,36.4
分布列如下
 Y  42.4  40.4  38.4 36.4
 P  0.1  0.4  0.4  0.1
∴E(Y)=42.4×0.1+40.4×0.4+38.4×0.4+36.4×0.1=39.4
∵36.0<39.4
∴汽車B為生產(chǎn)商獲得毛利潤更大.
點評:本題考查離散型隨機變量的分布列和期望,考查比較兩個變量的期望值,得到最優(yōu)思路,是一個利用概率知識解決實際問題的題目,是一個綜合題目
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)已知點P在曲線y=ex(e為自然對數(shù)的底數(shù))上,點Q在曲線y=lnx上,則丨PQ丨的最小值是
2
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)復數(shù)
1+i
1-i
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)拋物線的x2=16y焦點坐標為
(0,4)
(0,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ)為常數(shù),A>0,ω>0的部分圖象如圖所示,則f(0)的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•石家莊一模)函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ是常數(shù),A>0,ω>0)的部分圖象如圖所示,則f(0)的值是(  )

查看答案和解析>>

同步練習冊答案