【題目】設函數(shù).

1)討論的單調(diào)性;

2)當時,記的最小值為,證明:.

【答案】1)當時,上單調(diào)遞增;當時,上單調(diào)遞減,在上單調(diào)遞增.2)見解析.

【解析】

1)由題意可得的定義域為,求出的導函數(shù),通過判斷導函數(shù)的符號即可判斷的單調(diào)性;

2)由(1)可得,要證,即證,即證明,通過構造函數(shù),判斷函數(shù)的單調(diào)性,通過求得函數(shù)的最大值即可推出結果.

1)根據(jù)題意,可得的定義域為,

求導可得:,

因為,當時,,所以上單調(diào)遞增,

時,令可得,

時,,即,此時單調(diào)遞減,

時,,即,此時單調(diào)遞增,

綜上所述,當時,上單調(diào)遞增;當時,上單調(diào)遞減,在上單調(diào)遞增.

2)由(1)可得,最小值為,即,

由題意需證明,即,即證明,即證明,

,對求導有:,

因為,令可得:,

時,,此時單調(diào)遞增,當時,,此時單調(diào)遞減,

所以

,即.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)

1)當時,求曲線處的切線方程;

2)當時,求函數(shù)的單調(diào)區(qū)間;

3)在(2)的條件下,設函數(shù),若對于,,使成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某公司新發(fā)明了甲、乙兩種不同型號的手機,公司統(tǒng)計了消費者對這兩種型號手機的評分情況,作出如下的雷達圖,則下列說法不正確的是( )

A. 甲型號手機在外觀方面比較好.B. 甲、乙兩型號的系統(tǒng)評分相同.

C. 甲型號手機在性能方面比較好.D. 乙型號手機在拍照方面比較好.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,直線l的參數(shù)方程為為參數(shù),圓C的標準方程為以坐標原點為極點,x軸正半軸為極軸建立極坐標系.

求直線l和圓C的極坐標方程;

若射線l的交點為M,與圓C的交點為A,B,且點M恰好為線段AB的中點,求a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx)=2cosxsinx+2φ)為偶函數(shù),其中φ∈(0,),則下列關于函數(shù)gx)=sin2x+φ)的描述正確的是(

A.gx)在區(qū)間[]上的最小值為﹣1

B.gx)的圖象可由函數(shù)fx)的圖象向上平移一個單位,再向右平移個單位長度得到

C.gx)的圖象的一個對稱中心為(0

D.gx)的一個單調(diào)遞增區(qū)間為[0,]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某娛樂節(jié)目參賽選手分初賽培訓、復賽三個階段選拔,將50位參選手的初賽成績(總分150分)分成[90100),[100,110),[110,120),[120,130),[1301405組進行統(tǒng)計,得到如圖所示的頻率分布直方圖.

1)根據(jù)頻率分析直方圖,估算這50個選手初賽成績的平均分,若節(jié)日組規(guī)定成績大于或等于120分的選手可獲得節(jié)目組組織的培訓資格,120分以下(不包括120)的則被淘汰,求這50個人中獲得培訓資格的人數(shù);

2)節(jié)目組從獲得培訓資格的人員中選拔部分人員進入復賽.為增加節(jié)目的娛樂性,節(jié)目組提供了以下兩種進入復賽的方式(每位選手只能選擇其中一種)

第一種方式:利用分層抽樣的方法抽取6名選手參加復賽;

第二種方式:每人最多有5次答題機會,累計答對3題或答錯3題終止答題,答對3題可參加復賽

①已知甲的初賽成績在[120,130)內(nèi),他答對每一個問題的概率為,并且互相之間沒有影響甲要想?yún)⒓訌唾悾x擇那種方式更有利?

②若甲選擇第二種方式,求他在答題過程中答題個數(shù)X的分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在四棱錐中,底面為平行四邊形, , , 點在底面內(nèi)的射影在線段上,且, ,M在線段上,且

(Ⅰ)證明: 平面;

(Ⅱ)在線段AD上確定一點F,使得平面平面PAB,并求三棱錐的體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列四個命題:其中所有假命題的序號是_______.

①命題,的否定是,

②將函數(shù)的圖像向右平移個單位,得到函數(shù)的圖像;

③冪函數(shù)上是減函數(shù),則實數(shù);

④函數(shù)有兩個零點.

查看答案和解析>>

同步練習冊答案