李明在10場(chǎng)籃球比賽中的投籃情況統(tǒng)計(jì)如下(假設(shè)各場(chǎng)比賽相互獨(dú)立):
場(chǎng)次
投籃次數(shù)
命中次數(shù)
場(chǎng)次
投籃次數(shù)
命中次數(shù)
主場(chǎng)1
22
12
客場(chǎng)1
18
8
主場(chǎng)2
15
12
客場(chǎng)2
13
12
主場(chǎng)3
12
8
客場(chǎng)3
21
7
主場(chǎng)4
23
8
客場(chǎng)4
18
15
主場(chǎng)5
24
20
客場(chǎng)5
25
12
 
(1)從上述比賽中隨機(jī)選擇一場(chǎng),求李明在該場(chǎng)比賽中投籃命中率超過(guò)0.6的概率;
(2)從上述比賽中隨機(jī)選擇一個(gè)主場(chǎng)和一個(gè)客場(chǎng),求李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6的概率;
(3)記為表中10個(gè)命中次數(shù)的平均數(shù),從上述比賽中隨機(jī)選擇一場(chǎng),記為李明在這場(chǎng)比賽中的命中次數(shù),比較的大小(只需寫出結(jié)論)
(1)0.5;(2);(3).

試題分析:(1)根據(jù)表中數(shù)據(jù),在10場(chǎng)比賽中,李明投籃命中超過(guò)0.6的場(chǎng)次有5場(chǎng),利用古典概型公式求解;(2)設(shè)事件為“在隨機(jī)選擇的一場(chǎng)主場(chǎng)比賽中李明的投籃命中率超過(guò)0.6”,事件為“在隨機(jī)選擇的一場(chǎng)客場(chǎng)比賽中李明的投籃命中率超過(guò)0.6”,事件為“在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)比賽中,李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6”則,事件獨(dú)立,利用獨(dú)立事件、互斥事件的概率公式求解;(3)用公式分別計(jì)算、再比較大小.
(1)根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),在10場(chǎng)比賽中,李明投籃命中超過(guò)0.6的場(chǎng)次有5場(chǎng),分別是主場(chǎng)2,主場(chǎng)3,主場(chǎng)5,客場(chǎng)2,客場(chǎng)4,
所以在隨機(jī)選擇的一場(chǎng)比賽中,李明的投籃命中率超過(guò)0.6的概率是0.5.
(2)設(shè)事件為“在隨機(jī)選擇的一場(chǎng)主場(chǎng)比賽中李明的投籃命中率超過(guò)0.6”,
事件為“在隨機(jī)選擇的一場(chǎng)客場(chǎng)比賽中李明的投籃命中率超過(guò)0.6”,
事件為“在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)比賽中,李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6”
,事件、獨(dú)立,
根據(jù)投籃統(tǒng)計(jì)數(shù)據(jù),,.
所以,在隨機(jī)選擇的一個(gè)主場(chǎng)和一個(gè)客場(chǎng)比賽中,李明的投籃命中率一場(chǎng)超過(guò)0.6,一場(chǎng)不超過(guò)0.6的概率為.
(3).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

以下莖葉圖記錄了甲、乙兩組各三名同學(xué)在期末考試的數(shù)學(xué)成績(jī),乙組記錄中有一個(gè)數(shù)字模糊,無(wú)法確認(rèn).假設(shè)這個(gè)數(shù)字具有隨機(jī)性,并在圖中以a表示.
(1)若甲、乙兩個(gè)小組的數(shù)學(xué)平均成績(jī)相同,求a的值;
(2)求乙組平均成績(jī)超過(guò)甲組平均成績(jī)的概率;
(3)當(dāng)a=2時(shí),分別從甲、乙兩組中各隨機(jī)選取一名同學(xué),設(shè)這兩名同學(xué)成績(jī)之差的絕對(duì)值為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在調(diào)查男女乘客是否暈機(jī)的情況中,已知男乘客暈機(jī)為28人,不會(huì)暈機(jī)的也是28人,而女乘客暈機(jī)為28人,不會(huì)暈機(jī)的為56人,
(1)根據(jù)以上數(shù)據(jù)建立一個(gè)的列聯(lián)表;
(2)試判斷是否有95%的把握認(rèn)為是否暈機(jī)與性別有關(guān)?
其中為樣本容量。
P(K2≥k0)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

甲、乙、丙三名音樂愛好者參加某電視臺(tái)舉辦的演唱技能海選活動(dòng),在本次海選中有合格和不合格兩個(gè)等級(jí).若海選合格記分,海選不合格記分.假設(shè)甲、乙、丙海選合格的概率分別為,他們海選合格與不合格是相互獨(dú)立的.
(1)求在這次海選中,這三名音樂愛好者至少有一名海選合格的概率;
(2)記在這次海選中,甲、乙、丙三名音樂愛好者所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所,現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校對(duì)學(xué)生進(jìn)行視力調(diào)查.
(1)求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(2)若從抽取的6所學(xué)校中隨機(jī)抽取2所學(xué)校做進(jìn)一步數(shù)據(jù)分析,
①列出所有可能的抽取結(jié)果;
②求抽取的2所學(xué)校均為小學(xué)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在某學(xué)校組織的一次籃球定點(diǎn)投籃訓(xùn)練中,規(guī)定每人最多投3次:在A處每投進(jìn)一球得3分,在B處每投進(jìn)一球得2分;如果前兩次得分之和超過(guò)3分即停止投籃,否則投第三次。某同學(xué)在A處的命中率q1為0.25,在B處的命中率為q2,該同學(xué)選擇先在A處投一球,以后都在B處投,用ξ表示該同學(xué)投籃訓(xùn)練結(jié)束后所得的總分,其分布列為
ξ
0
2
3
4
5
P
0.03
P1
P2
P3
P4
 
(1)求q2的值;
(2)求隨機(jī)變量ξ的數(shù)學(xué)期望E(ξ);
(3)試比較該同學(xué)選擇都在B處投籃得分超過(guò)3分與選擇上述方式投籃得分超過(guò)3分的概率的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某人一周晚上值班2次,在已知他周日一定值班的條件下,他在周六晚上值班的概率為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某班級(jí)有4名學(xué)生被復(fù)旦大學(xué)自主招生錄取后,大學(xué)提供了3個(gè)專業(yè)由這4名學(xué)生選擇,每名學(xué)生只能選擇一個(gè)專業(yè),假設(shè)每名學(xué)生選擇每個(gè)專業(yè)都是等可能的,則這3個(gè)專業(yè)都有學(xué)生選擇的概率是               

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知甲盒中僅有1個(gè)球且為紅球,乙盒中有個(gè)紅球和個(gè)籃球,從乙盒中隨機(jī)抽取個(gè)球放入甲盒中.
(a)放入個(gè)球后,甲盒中含有紅球的個(gè)數(shù)記為
(b)放入個(gè)球后,從甲盒中取1個(gè)球是紅球的概率記為.
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案