設函數(shù)f(x)=x+
px
(p>0).
(1)若P=4,判斷f(x)在區(qū)間(0,2)的單調(diào)性,并加以證明;
(2)若f(x)在區(qū)間(0,2)上為單調(diào)減函數(shù),求實數(shù)P的取值范圍;
(3)若p=8,方程f(x)=3a-264在x∈(0,2)內(nèi)有實數(shù)根,求實數(shù)a的取值范圍.
分析:(1)由p=4知,f(x)=x+
4
x
 在(0 2)內(nèi)是減函數(shù),再利用函數(shù)的單調(diào)性的定義進行證明.
(2)任意設 0<x1<x2<2,則由題意可得可得f(x1)-f(x2)=(x2-x1)•
p-x1•x2
x1•x2
>0.從而求得p的范圍.
(3)由(2)可知f(x)=x+
8
x
在(0,2)上單調(diào)遞減,可得f(x)>2+4=6,故有3a-264>6,由此解得a的范圍.
解答:解:(1)由p=4知,f(x)=x+
4
x
,f(x)在(0 2)內(nèi)是減函數(shù).
證明:任意設 0<x1<x2<2,
由于f(x1)-f(x2)=(x1+
4
x1
)-(x2+
4
x2
)=-(x2-x1)+
4(x2-x1)
x1•x2
 
=(x2-x1)(
4
x1•x2
-1)=(x2-x1)•
4-x1•x2
x1•x2

由題設可得 (x2-x1)>0,0<x1•x2<4,∴
4-x1•x2
x1•x2
>0,
故f(x1)-f(x2)>0,即 f(x1)>f(x2),故f(x)在(0 2)內(nèi)是減函數(shù).
(2)若f(x)在區(qū)間(0,2)上為單調(diào)減函數(shù),任意設 0<x1<x2<2,
則可得f(x1)-f(x2)=(x2-x1)•
p-x1•x2
x1•x2
>0.
由題設可得 (x2-x1)>0,0<x1•x2<4,∴p≥4.
(3)由p=8,可得f(x)=x+
8
x

由(2)可知f(x)在(0,2)上單調(diào)遞減,∴f(x)>f(2)=2+
8
2
=6,即 f(x)>6.
故由方程f(x)=3a-264在x∈(0,2)內(nèi)有實數(shù)根,可得3a-264>6,解得a>90,故a的范圍為(90,+∞).
點評:本題主要考查函數(shù)的單調(diào)性的判斷和證明,利用函數(shù)的單調(diào)性求參數(shù)的范圍,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為A,若存在非零實數(shù)t,使得對于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域為[0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實數(shù)m的取值范圍是(  )
A、[-5,5]
B、[-
5
,
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設曲線y=f(x)在與x軸交點處的切線為y=4x-12,f′(x)為f(x)的導函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)

②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案