sin2
π
3
-x)+sin2
π
6
+x)=
1
1
分析:原式利用二倍角的余弦函數(shù)公式化簡,再利用和差化積公式化簡,即可求出值.
解答:解:原式=
1
2
×[1-cos(
3
-2x)+1-cos(
π
3
+2x)]=
1
2
×[2-2cos
π
2
cos(
π
6
-2x)]=
1
2
×(2-0)=1.
故答案為:1
點(diǎn)評:此題考查了二倍角的余弦函數(shù)公式,兩角和與差的正弦函數(shù)公式,熟練掌握公式是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x+
π
6
)=
1
4
,則sin(
6
-x)+sin2(
π
3
-x)
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(選做題)求下列函數(shù)的導(dǎo)數(shù):
(1)y=(2x3-x+
1
x
)4
;                       
(2)y=
1
1-2x2
;
(3)y=sin2(2x+
π
3
)
;                        
(4)y=
1+x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x+
π
6
)=
1
4
,求sin(x-
5
6
π)+sin2(
π
3
-x)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sin(x+
π
6
)=
3
3
,求sin(
6
-x)+sin2(
π
3
-x)
的值.

查看答案和解析>>

同步練習(xí)冊答案