已知函數(shù)y=f(x),x∈N*,y∈N*,滿足:①對(duì)任意,都有x1f(x1)+x2f(x2)>x1f(x2)+x2f(x1);②對(duì)任意n∈N*都有f[f(n)]=3n.
(1)試證明:f(x)為N*上的單調(diào)增函數(shù);
(2)求f(1)+f(6)+f(30);
(3)令,試證明:,判斷Sn的大。ú恍枰C明)

解:(1)由①知,對(duì)任意a,b∈N*,a<b,都有(a﹣b)(f(a)﹣f(b))>0,
由于a﹣b<0,從而f(a)<f(b),
所以函數(shù)f(x)為N*上的單調(diào)增函數(shù). 
(2)令f(1)=a,則a>1,顯然a≠1,
否則f(f(1))=f(1)=1,與f(f(1))=3矛盾.
從而a>1,而由f(f(1))=3,
即得f(a)=3.
又由(I)知f(a)>f(1)=a,
即a<3.
于是得1<a<3,
又a∈N*,從而a=2,即f(1)=2. 
而由f(a)=3知,f(2)=3.
于是f(3)=f(f(2))=3×2=6,
  f(6)=f(f(3))=3×3=9,
f(9)=f(f(6))=3×6=18,
f(18)=f(f(9))=3×9=27,
 f(27)=f(f(18))=3×18=54,
f(54)=f(f(27))=3×27=81,
由于54﹣27=81﹣54=27,
而且由(I)知,函數(shù)f(x)為單調(diào)增函數(shù),
因此f(30)=54+3=57.
從而f(1)+f(6)+f(30)=2+9+57=68. 
(3),,a1=f(3)=6.
即數(shù)列{an}是以6為首項(xiàng),以3為公比的等比數(shù)列.

于是,
顯然,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

16、已知函數(shù)y=f(x)是R上的奇函數(shù)且在[0,+∞)上是增函數(shù),若f(a+2)+f(a)>0,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

2、已知函數(shù)y=f(x+1)的圖象過(guò)點(diǎn)(3,2),則函數(shù)f(x)的圖象關(guān)于x軸的對(duì)稱圖形一定過(guò)點(diǎn)( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是偶函數(shù),當(dāng)x<0時(shí),f(x)=x(1-x),那么當(dāng)x>0時(shí),f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)是定義在R上的奇函數(shù),當(dāng)x>0 時(shí),f(x)的圖象如圖所示,則不等式x[f(x)-f(-x)]≤0 的解集為
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)的圖象如圖,則滿足f(log2(x-1))•f(2-x2-1)≥0的x的取值范圍為
(1,3]
(1,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案