頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上的拋物線C過(guò)點(diǎn)P(4,4).過(guò)該拋物線焦點(diǎn)F的直線交拋物線于A、B亮點(diǎn),點(diǎn)M和N分別為A、B兩點(diǎn)在拋物線準(zhǔn)線l上的射影.準(zhǔn)線l與x軸的交點(diǎn)為E.
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)某學(xué)習(xí)小組在計(jì)算機(jī)動(dòng)態(tài)數(shù)學(xué)軟件的幫助下,得到了關(guān)于拋物線C性質(zhì)的如下猜想:“直線AN和BM恒相交于原點(diǎn)O”,試證明該結(jié)論是正確的;
(3)該小組孩項(xiàng)研究拋物線C中∠AEB的大小范圍,試通過(guò)計(jì)算
EA
EB
的結(jié)果來(lái)給出一個(gè)你認(rèn)為正確的與∠AEB有關(guān)的推論,并說(shuō)明理由.
(1)由題意可可設(shè)拋物線的方程y2=2px(p>0)
∵拋物線C過(guò)點(diǎn)P(4,4)∴p=2
∴y2=4x
(2)當(dāng) x1≠x2時(shí),kOA=kON,所以此時(shí)A、O、N三點(diǎn)共線;當(dāng) x1=x2時(shí),不難得到ABNM為矩形,且有對(duì)稱性可知點(diǎn)O為對(duì)角線AN、BM的交點(diǎn),所以此時(shí)A、O、N三點(diǎn)共線.
(3)設(shè)A(x1,y1),B(x2,y2),因?yàn)锳B過(guò)焦點(diǎn)F且F(1,0),
當(dāng) x1≠x2時(shí),AB所在的直線的方程y=k(x-1),k≠0,代入拋物線方程可得k2x2-(2k2+4)x+k2=0,
所以
x1+x2=
2k2+4
k2
x1x2=1

當(dāng) x1=x2時(shí),AB所在的直線垂直于x軸,不難求得AF=EF=EB=2,故此時(shí)∠AEB=90°
綜上,可提出推論“∠AEB只能是銳角或直角”
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直線l過(guò)坐標(biāo)原點(diǎn),拋物線C頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸正半軸上.若點(diǎn)A(-1,0)和點(diǎn)B(0,8)關(guān)于l的對(duì)稱點(diǎn)都在C上,求直線l和拋物線C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

頂點(diǎn)在原點(diǎn)、焦點(diǎn)在x軸上的拋物線被直線y=x+1截得的弦長(zhǎng)是
10
,則拋物線的方程是(  )
A、y2=-x或y2=5x
B、y2=-x
C、y2=x或y2=-5x
D、y2=5x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線E的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,開(kāi)口向左,且拋物線上一點(diǎn)M到其焦點(diǎn)的最小距離為
1
4
,拋物E與直ly=k(x+1)(k∈R)相交于A、B兩點(diǎn).
(1)求拋物線E的方程;
(2)當(dāng)△OAB的面積等
10
時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸,拋物線上有兩個(gè)動(dòng)點(diǎn)A、B和一個(gè)定點(diǎn)M(2,y0),F(xiàn)是拋物線的焦點(diǎn),且|AF|、|MF|、|BF|成等差數(shù)列,線段AB的中點(diǎn)到拋物線準(zhǔn)線的距離是4,求拋物線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線頂點(diǎn)在原點(diǎn),焦點(diǎn)在x軸上,其上一點(diǎn)P(1,m)到焦點(diǎn)的距離為3,則拋物線方程為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案