在實數(shù)集R中定義一種運算“⊕”,具有性質(zhì):
①對任意a,b∈R,a⊕b=b⊕a;
②對任意a∈R,a⊕0=a;
③對任意a,b,c∈R,(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(b⊕c)-2c.
函數(shù)f(x)=x⊕(x>0)的最小值為( )
A.4
B.3
C.2
D.1
【答案】分析:根據(jù)題中給出的對應(yīng)法則,可得f(x)=(x⊕)⊕0=1+x+,利用基本不等式求最值可得x+≥2,當(dāng)且僅當(dāng)x=1時等號成立,由此可得函數(shù)f(x)的最小值為f(1)=3.
解答:解:根據(jù)題意,得
f(x)=x⊕=(x⊕)⊕0=0⊕(x•)+(x⊕0)+(⊕0 )-2×0=1+x+
即f(x)=1+x+
∵x>0,可得x+≥2,當(dāng)且僅當(dāng)x==1,即x=1時等號成立
∴1+x+≥2+1=3,可得函數(shù)f(x)=x⊕(x>0)的最小值為f(1)=3
故選:B
點評:本題給出新定義,求函數(shù)f(x)的最小值.著重考查了利用基本不等式求最值、函數(shù)的解析式求法和簡單的合情推理等知識,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中定義一種運算“*”,對任意a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì):
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(2x)*
1
2x
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
2
),(
1
2
,+∞)

其中所有正確說法的個數(shù)為( 。
A、0B、1C、2D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中定義一種運算“△”,且對任意a,b∈R,具有性質(zhì):
①a△b=b△a;   ②a△0=a;③(a△b)△c=c△(a•b)+(a△c)+(b△c)+c,則函數(shù)f(x)=|x|△
1|x|
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在實數(shù)集R中定義一種運算“*”,對于任意給定的a,b∈R,a*b為唯一確定的實數(shù),且具有性質(zhì);
(1)對任意a,b∈R,a*b=b*a;
(2)對任意a∈R,a*0=a;
(3)對任意a,b∈R,(a*b)*c=c*(ab)+(a*c)+(c*b)-2c.
關(guān)于函數(shù)f(x)=(3x)*(
1
3x
)
的性質(zhì),有如下說法:
①函數(shù)f(x)的最小值為3;
②函數(shù)f(x)為奇函數(shù);
③函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-
1
3
),(
1
3
,+∞)

其中所有正確說法的序號為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)在實數(shù)集R中定義一種運算“⊕”,對任意a,b⊕b為唯一確定的實數(shù)且具有性質(zhì):
(1)對任意a,b∈R,有a⊕b=b⊕a;
(2)對任意a∈R,有a⊕0=a;
(3)對任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x⊕
1x
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-∞,-1)、(1,+∞).
其中正確例題的序號有
(3)
(3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江二模)在實數(shù)集R中定義一種運算“⊕”,對任意a,b∈R,a⊕b為唯一確定的實數(shù)且具有性質(zhì):
(1)對任意a,b∈R,有a⊕b=b⊕a;
(2)對任意a∈R,有a⊕0=a;
(3)對任意a,b,c∈R,有(a⊕b)⊕c=c⊕(ab)+(a⊕c)+(c⊕b)-2c.
已知函數(shù)f(x)=x2
1x2
,則下列命題中:
(1)函數(shù)f(x)的最小值為3;
(2)函數(shù)f(x)為奇函數(shù);
(3)函數(shù)f(x)的單調(diào)遞增區(qū)間為(-1,0)、(1,+∞).
其中正確例題的序號有
(1)(3)
(1)(3)

查看答案和解析>>

同步練習(xí)冊答案