(12分)已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233637755303.png" style="vertical-align:middle;" />的單調(diào)函數(shù)圖關(guān)于點(diǎn)對(duì)稱,當(dāng)時(shí),.
(1)求的解析式;
(2)若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.
(1) ;(2)
本試題主要是考查了函數(shù)的奇偶性以及函數(shù)的單調(diào)性的運(yùn)用。
(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233638051316.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)     當(dāng)時(shí),   又函數(shù)是奇函數(shù)   
(2)上單調(diào) 上單調(diào)遞減,化簡(jiǎn)表達(dá)式得到求解。
解:(1)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823233638051316.png" style="vertical-align:middle;" />的函數(shù)是奇函數(shù)     ----2分 當(dāng)時(shí),   又函數(shù)是奇函數(shù)    -5分 
綜上所述      ----6分
(2)上單調(diào) 上單調(diào)遞減  --8分由
是奇函數(shù) ,又是減函數(shù)  -----10分
對(duì)任意恒成立 得即為所求 -------12分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

( 12分)函數(shù) 
(1)若,求的值域
(2)若在區(qū)間上有最大值14。求的值; 
(3)在(2)的前題下,若,作出的草圖,并通過(guò)圖象求出函數(shù)的單調(diào)區(qū)間

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)f(x)=, x∈[3, 5]
(1)判斷f(x)單調(diào)性并證明;(2)求f(x)最大值,最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的最大值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)已知函數(shù)的最大值為.
(1)設(shè),求的取值范圍;
(2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列函數(shù)中,在其定義域是減函數(shù)的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是定義在上的偶函數(shù),當(dāng)時(shí),,且,則不等式的解集是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分10分)設(shè)函數(shù)是定義域?yàn)镽的奇函數(shù).
(1)求的值;
(2)若,試判斷函數(shù)單調(diào)性(不需證明)并求不等式的解集;
(3)若上的最小值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)f(x)是R上的偶函數(shù),且在[0,+∞)上單調(diào)遞增,若a<b<0,則(   )
A.f(a)<f(b)B.f(a)>f(b)
C.f(a)=f(b)D.無(wú)法確定

查看答案和解析>>

同步練習(xí)冊(cè)答案