(本小題10分)

已知拋物線在x軸的正半軸上,過(guò)M的直線與C相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn)。

(I)若m=1,且直線的斜率為1,求以AB為直徑的圓的方程;

(II)問(wèn)是否存在定點(diǎn)M,不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng),使得恒為定值。

 

【答案】

(I)

(II)存在定點(diǎn)M(2,0)

【解析】  2(I)設(shè)A,B兩點(diǎn)坐標(biāo)為,AB中點(diǎn)P的坐標(biāo)為

由題意得M(1,0),直線的方程為

故圓心為P(3,2),直徑

∴以AB為直徑的圓的方程為

   (II)若存在這樣的點(diǎn)M,使得為定值,直線

,                                                               13分

因?yàn)橐ck無(wú)關(guān),只需令即m=2,進(jìn)而

所以,存在定點(diǎn)M(2,0),不論直線繞點(diǎn)M如何轉(zhuǎn)動(dòng),

恒為定值

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

必做題,本小題10分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
已知拋物線y2=4x的焦點(diǎn)為F,直線l過(guò)點(diǎn)M(4,0).
(1)若點(diǎn)F到直線l的距離為
3
,求直線l的斜率;
(2)設(shè)A,B為拋物線上兩點(diǎn),且AB不與x軸垂直,若線段AB的垂直平分線恰過(guò)點(diǎn)M,求證:線段AB中點(diǎn)的橫坐標(biāo)為定值.(6分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:甘肅省蘭州一中10-11學(xué)年高一下學(xué)期期末考試數(shù)學(xué) 題型:解答題

(本小題10分)已知,且,求值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年浙江省杭州市七校高二上學(xué)期期中考試數(shù)學(xué)文卷 題型:解答題

(本小題10分)

如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC.

(1)求證:平面ABFE⊥平面DCFE;

(2)求四面體B—DEF的體積.

 

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年哈爾濱三中高一下學(xué)期第二模塊數(shù)學(xué)卷 題型:解答題

(本小題10分)

棱長(zhǎng)為2的正方體中,

①求異面直線所成角的余弦值;

②求與平面所成角的余弦值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年哈爾濱三中高一下學(xué)期第二模塊數(shù)學(xué)卷 題型:解答題

(本小題10分)

①已知 ,,;求證:.    

    ②已知,;求證:.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案