函數(shù)f(x)=1+log2x與g(x)=21-x在同一直角坐標(biāo)系下的圖象大致是
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2009年大連市高三第一次模擬試卷數(shù)學(xué)(理科) 題型:013
已知函數(shù)f(x)=1-2sin2x在點(diǎn)處的切線為l,則直線l、曲線f(x)以及直線x=所圍成的區(qū)域的面積為
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
設(shè)函數(shù)f(x)的定義域?yàn)镈,若存在非零實(shí)數(shù)l使得對(duì)于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的l高調(diào)函數(shù).
(1)如果定義域?yàn)閇-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的m高調(diào)函數(shù),求實(shí)數(shù)m的取值范圍.
(2)如果定義域?yàn)镽的函數(shù)f(x)是奇函數(shù),當(dāng)x≥0時(shí),f(x)=|x-a2|-a2,且f(x)為R上的4高調(diào)函數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆湖北省大治二中高二3月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3+x-16,
(1)求曲線y=f(x)在點(diǎn)(2,-6)處的切線的方程;
(2)直線l為曲線y=f(x)的切線,且經(jīng)過原點(diǎn),求直線l的方程及切點(diǎn)坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年陜西省高二下期第一次月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)f(x)=x3-3x及y=f(x)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l.
(1)求使直線l和y=f(x)相切且以P為切點(diǎn)的直線方程;
(2)求使直線l和y=f(x)相切且切點(diǎn)異于P的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)導(dǎo)數(shù)專項(xiàng)訓(xùn)練(河北) 題型:解答題
已知函數(shù)f(x)=x3+ax2+bx+c,曲線y=f(x)在x=1處的切線為l:3x-y+1=0,當(dāng)x=時(shí),y=f(x)有極值.
(1)求a、b、c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com