已知正方體ABCD-A1B1C1D1中,E、F分別為棱BC和棱CC1的中點,則異面直線AC和EF所成的角為( )

A.30°
B.45°
C.60°
D.90°
【答案】分析:連接BC1,A1C1,A1B,根據(jù)正方體的幾何特征,我們能得到∠A1C1B即為異面直線AC和EF所成的角,判斷三角形A1C1B的形狀,即可得到異面直線AC和EF所成的角.
解答:解:連接BC1,A1C1,A1B,如圖所示:

根據(jù)正方體的結(jié)構(gòu)特征,可得
EF∥BC1,AC∥A1C1,
則∠A1C1B即為異面直線AC和EF所成的角
BC1=A1C1=A1B,
∴△A1C1B為等邊三角形
故∠A1C1B=60°
故選C
點評:本題考查的知識點是異面直線及其所成的角,其中利用平移的方法,構(gòu)造∠A1C1B為異面直線AC和EF所成的角,是解答本題的關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1的棱長為2,點P在平面DD1C1C內(nèi),PD1=PC1=
2
.求證:
(1)平面PD1A1⊥平面D1A1BC;
(2)PC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E、F分別為BB1、CC1的中點,那么直線AE與D1F所成角的余弦值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1中,E為棱CC1的動點.
(1)當E恰為棱CC1的中點時,試證明:平面A1BD⊥平面EBD;
(2)在棱CC1上是否存在一個點E,可以使二面角A1-BD-E的大小為45°?如果存在,試確定點E在棱CC1上的位置;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正方體ABCD-A1B1C1D1,則四面體A1-C1BD在面A1B1C1D1上的正投影的面積與該四面體表面積之比是
3
6
3
6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)已知正方體ABCD-A1B1C1D1,O是底ABCD對角線的交點.
(1)求證:C1O∥面AB1D1;
(2)求異面直線AD1與 C1O所成角的大。

查看答案和解析>>

同步練習冊答案