在[-,]上滿足sinx+cosx≥的x的取值范圍是________.

答案:
解析:

解析:

如圖,

答案:


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在[0,2π]上滿足sinx≥
1
2
的x的取值范圍是( 。
A、[0,
π
6
]
B、[
π
6
,
6
]
C、[
π
6
3
]
D、[
6
,π]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)定義:若存在常數(shù)k,使得對定義域D內(nèi)的任意兩個(gè)不同的實(shí)數(shù)x1,x2,均有:|f(x1)-f(x2)|≤k|x1-x2|成立,則稱f(x)在D上滿足利普希茨(Lipschitz)條件.
(1)試舉出一個(gè)滿足利普希茨(Lipschitz)條件的函數(shù)及常數(shù)k的值,并加以驗(yàn)證;
(2)若函數(shù)f(x)=
x+1
在[1,+∞)
上滿足利普希茨(Lipschitz)條件,求常數(shù)k的最小值;
(3)現(xiàn)有函數(shù)f(x)=sinx,請找出所有的一次函數(shù)g(x),使得下列條件同時(shí)成立:
①函數(shù)g(x)滿足利普希茨(Lipschitz)條件;
②方程g(x)=0的根t也是方程f(
4
)=
2
sin(
2
-
π
4
)=-
2
cos
π
4
=-1
;
③方程f(g(x))=g(f(x))在區(qū)間[0,2π)上有且僅有一解.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在(0,2π)上滿足sinx>
1
2
的x的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)y=f(x)在區(qū)間D上滿足:f(
x1+x2+…xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
,則稱y=f(x)在區(qū)間D上為“凸函數(shù)”.現(xiàn)已知y=sinx,x∈[0,π]為“凸函數(shù)”,且A,B,C,為△ABC的三個(gè)內(nèi)角,則sinA+sinB+sinC的最大值為
3
3
2
3
3
2

查看答案和解析>>

同步練習(xí)冊答案