精英家教網 > 高中數學 > 題目詳情

設函數

(1)求函數f(x)的最小正周期和在[0,π]上的單調遞增區(qū)間;

(2)當時,f(x)的最大值為2,求m的值.

答案:
解析:

  解:(1)

  ∴函數的最小正周期

  在上單調遞增區(qū)間為

  (2)當時,∵遞增,∴當時,取最大值為,即.解得,∴的值為


練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數f(x)=x2+bln(x+1),其中b≠0.
(1)若b=-12,求f(x)的單調遞增區(qū)間;
(2)如果函f(x)在定義域內既有極大值又有極小值,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

由函數y=f(x)確定數列{an},an=f(n),函數y=f(x)的反函數y=f-1(x)能確定數列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數列{bn}是數列{an}的“自反函數列”
(1)設函數f(x)=
px+1
x+1
,若由函數f(x)確定的數列{an}的自反數列為{bn},求an
(2)已知正整數列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函f(x)=ln x,g(x)=
12
ax2+bx(a≠0).
(1)若a=-2時,函h(x)=f(x)-g(x),在其定義域是增函數,求b的取值范圍;
(2)在(1)的結論下,設函數φ(x)=e2x+bex,x∈[0,ln2],求函數φ(x)的最小值;
(3)當a=-2,b=4時,求證2x-f(x)≥g(x)-3.

查看答案和解析>>

科目:高中數學 來源: 題型:

設x1,x2(x1≠x2)是函數f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(1)若x1=-1,x2=2,求函f(x)的解析式;
(2)若|x1|+|x2|=2
2
,求b的最大值.

查看答案和解析>>

科目:高中數學 來源:中學教材全解 高中數學 必修1(人教A版) 人教A版 題型:044

已知函數

(1)求圖象的開口方向,對稱軸,頂點坐標,與x軸交點坐標.

(2)求函數的單調區(qū)間,最值,零點.

(3)設圖象與x軸相交于點(x1,0),(x2,0),不求出根,求|x1-x2|.

(4)已知,不計算函數值,求

(5)不計算函數值,試比較的大。

(6)寫出使函數值為負數的自變量x的集合.

查看答案和解析>>

同步練習冊答案