精英家教網 > 高中數學 > 題目詳情

已知橢圓的中心在原點,離心率為,一個焦點是F(0,1).

   (Ⅰ)求橢圓方程;

   (Ⅱ)直線過點F交橢圓于A、B兩點,且點F分向量的比為2,求直線的斜率.

解:(Ⅰ)設橢圓方程為>b>0).

       依題意,, c=1,,,

       ∴所求橢圓方程為

   (Ⅱ)若直線的斜率k不存在,則不滿足

       當直線的斜率k存在時,設直線的方程為.因為直線過橢圓的焦點

       F(0,1),所以取任何實數, 直線與橢圓均有兩個交點A、B.

       設A

       聯立方程   消去y,得

       ,      ①               ,      ②

       由F(0,1),A,則,

       ,∴,得

       將代入①、②,得

       , ③      ,   ④

       由③、④ 得 ,

       化簡得,解得,

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知橢圓的中心在原點,焦點在x軸上,離心率為
2
2
,且橢圓經過圓C:x2+y2-4x+2
2
y=0的圓心C.
(1)求橢圓的方程;
(2)設直線l過橢圓的焦點且與圓C相切,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在原點O,焦點在坐標軸上,直線y=2x+1與該橢圓相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在原點,對稱軸為坐標軸,左焦點為F1(-3,0),右準線方程為x=
253

(1)求橢圓的標準方程和離心率e;
(2)設P為橢圓上第一象限的點,F2為右焦點,若△PF1F2為直角三角形,求△PF1F2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在原點,且橢圓過點P(3,2),焦點在坐標軸上,長軸長是短軸長的3倍,求橢圓的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知橢圓的中心在原點,一個焦點F1(0,-2
2
),且離心率e滿足:
2
3
,e,
4
3
成等比數列.
(1)求橢圓方程;
(2)直線y=x+1與橢圓交于點A,B.求△AOB的面積.

查看答案和解析>>

同步練習冊答案