【題目】以直角坐標(biāo)系的原點O為極點,x軸的正半軸為極軸,且兩個坐標(biāo)系取相等的長度單位,已知直線l的參數(shù)方程為 (t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點,當(dāng)φ變化時,求|AB|的最小值.

【答案】
(1)解:直線l的參數(shù)方程為 消去參數(shù)可得:xcosφ﹣ysinφ+2sinφ=0;

即直線l的普通方程為xcosφ﹣ysinφ+2sinφ=0;

曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.可得:ρ2cos2θ=8ρsinθ.

那么:x2=8y.

∴曲線C的直角坐標(biāo)方程為x2=8y


(2)解:直線l的參數(shù)方程帶入C的直角坐標(biāo)方程,可得:t2cos2φ﹣8tsinφ﹣16=0;

設(shè)A,B兩點對應(yīng)的參數(shù)為t1,t2,

,

∴|AB|=|t1﹣t2|= =

當(dāng)φ= 時,|AB|取得最小值為8


【解析】(1)直接消去直線l的參數(shù)可得普通方程;根據(jù)ρcosθ=x,ρsinθ=y,ρ2=x2+y2 , 進(jìn)行代換即得曲線C的直角坐標(biāo)方程.(2)將直線l的參數(shù)方程帶入C的直角坐標(biāo)方程;設(shè)出A,B兩點的參數(shù),利用韋達(dá)定理建立關(guān)系求解最值即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,且滿足(2c﹣a)cosB﹣bcosA=0.
(Ⅰ)求角B的大小;
(Ⅱ)求 sinA+sin(C﹣ )的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點為坐標(biāo)原點,極軸為x軸的非負(fù)半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點M(5,6),且斜率為
(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】體積為 的球有一個內(nèi)接正三棱錐P﹣ABC,PQ是球的直徑,∠APQ=60°,則三棱錐P﹣ABC的體積為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,已知
(1)求角B的大;
(2)若b= ,a+c=3,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ex+bex﹣2asinx(a,b∈R).
(1)當(dāng)a=0時,討論函數(shù)f(x)的單調(diào)區(qū)間;
(2)當(dāng)b=﹣1時,若f(x)>0對任意x∈(0,π)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖框圖,已知輸出的s∈[0,4],若輸入的t∈[m,n],則實數(shù)n﹣m的最大值為(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: 的左右焦點與其短軸的一個端點是正三角形的三個頂點,點D 在橢圓C上,直線l:y=kx+m與橢圓C相交于A、P兩點,與x軸、y軸分別相交于點N和M,且PM=MN,點Q是點P關(guān)于x軸的對稱點,QM的延長線交橢圓于點B,過點A、B分別作x軸的垂涎,垂足分別為A1、B1
(1)求橢圓C的方程;
(2)是否存在直線l,使得點N平分線段A1B1?若存在,求求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(2015·新課標(biāo)I卷)在直角坐標(biāo)系xoy中,曲線Cy=與直線y=kx+a(a>0)交與M,N兩點,
(1)當(dāng)k=0時,分別求C在點MN處的切線方程;
(2)y軸上是否存在點P , 使得當(dāng)k變動時,總有∠OPM=∠OPN?說明理由.

查看答案和解析>>

同步練習(xí)冊答案