因臺風災(zāi)害,我省某水果基地龍眼樹嚴重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實施.若實施方案1,預計第三年可以使龍眼產(chǎn)量恢復到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案2,預計第三年可以使龍眼產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第三年與第四年相互獨立,令ξi(i=1,2)表示方案i實施后第四年龍眼產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施后第四年龍眼產(chǎn)量達不到、恰好達到、超過災(zāi)前產(chǎn)量,預計利潤分別為10萬元、15萬元、20萬元.問實施哪種方案的平均利潤更大?
【答案】分析:(1)根據(jù)題意得到兩個變量的可能取值,根據(jù)條件中所給的方案一和方案二的兩年龍眼產(chǎn)量的變化有關(guān)數(shù)據(jù)寫出兩個變量的分布列.
(2)根據(jù)兩種方案對應(yīng)的數(shù)據(jù),做出方案一、方案二兩年后龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率,得到結(jié)論:方案二兩年后龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大.
(3)根據(jù)兩年后龍眼產(chǎn)量和災(zāi)前產(chǎn)量的比較,做出達不到災(zāi)前產(chǎn)量,達到災(zāi)前產(chǎn)量,超過災(zāi)前產(chǎn)量的概率,列出龍眼帶來效益的分布列,做出期望.
解答:解:(1)ξ1的分布列為:
ξ10.80.91.01.1251.25
P10.20.150.350.150.15
(3分)
ξ2的分布列為
ξ20.80.961.01.21.44
P20.30.20.180.240.08
(6分)
(2)由(1)可得ξ1>1的概率P(ξ1>1)=0.15+0.15=0.3,(7分)
ξ2>1的概率P(ξ2>1)=0.24+0.08=0.32,(8分)
∵P(ξ2>1)>P(ξ1>1),
∴實施方案2,第四年產(chǎn)量超過災(zāi)前概率更大.(9分)
(3)設(shè)實施方案1、2的平均利潤分別為利潤A、利潤B,根據(jù)題意,
利潤A=(0.2+0.15)×10+0.35×15+(0.15+0.15)×20=14.75(萬元)   (10分)
利潤B=(0.3+0.2)×10+0.18×15+(0.24+0.08)×20=14.1(萬元)    (11分)
∵利潤A>利潤B,
∴實施方案1平均利潤更大.(13分)
點評:本題考查離散型隨機變量的分布列和期望,考查解決實際問題的能力,考查對題干較長的應(yīng)用題的理解,是一個綜合題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•肇慶一模)因臺風災(zāi)害,我省某水果基地龍眼樹嚴重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實施.若實施方案1,預計第三年可以使龍眼產(chǎn)量恢復到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案2,預計第三年可以使龍眼產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第三年與第四年相互獨立,令ξi(i=1,2)表示方案i實施后第四年龍眼產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施后第四年龍眼產(chǎn)量達不到、恰好達到、超過災(zāi)前產(chǎn)量,預計利潤分別為10萬元、15萬元、20萬元.問實施哪種方案的平均利潤更大?

查看答案和解析>>

科目:高中數(shù)學 來源:肇慶一模 題型:解答題

因臺風災(zāi)害,我省某水果基地龍眼樹嚴重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實施.若實施方案1,預計第三年可以使龍眼產(chǎn)量恢復到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案2,預計第三年可以使龍眼產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第三年與第四年相互獨立,令ξi(i=1,2)表示方案i實施后第四年龍眼產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施后第四年龍眼產(chǎn)量達不到、恰好達到、超過災(zāi)前產(chǎn)量,預計利潤分別為10萬元、15萬元、20萬元.問實施哪種方案的平均利潤更大?

查看答案和解析>>

科目:高中數(shù)學 來源:肇慶一模 題型:解答題

因臺風災(zāi)害,我省某水果基地龍眼樹嚴重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實施.若實施方案1,預計第三年可以使龍眼產(chǎn)量恢復到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案2,預計第三年可以使龍眼產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第三年與第四年相互獨立,令ξi(i=1,2)表示方案i實施后第四年龍眼產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施后第四年龍眼產(chǎn)量達不到、恰好達到、超過災(zāi)前產(chǎn)量,預計利潤分別為10萬元、15萬元、20萬元.問實施哪種方案的平均利潤更大?

查看答案和解析>>

科目:高中數(shù)學 來源:2013年廣東省肇慶市高考數(shù)學一模試卷(理科)(解析版) 題型:解答題

因臺風災(zāi)害,我省某水果基地龍眼樹嚴重受損,為此有關(guān)專家提出兩種拯救龍眼樹的方案,每種方案都需分四年實施.若實施方案1,預計第三年可以使龍眼產(chǎn)量恢復到災(zāi)前的1.0倍、0.9倍、0.8倍的概率分別是0.3、0.3、0.4;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.25倍、1.0倍的概率分別是0.5、0.5.若實施方案2,預計第三年可以使龍眼產(chǎn)量達到災(zāi)前的1.2倍、1.0倍、0.8倍的概率分別是0.2、0.3、0.5;第四年可以使龍眼產(chǎn)量為第三年產(chǎn)量的1.2倍、1.0倍的概率分別是0.4、0.6.實施每種方案第三年與第四年相互獨立,令ξi(i=1,2)表示方案i實施后第四年龍眼產(chǎn)量達到災(zāi)前產(chǎn)量的倍數(shù).
(1)寫出ξ1、ξ2的分布列;
(2)實施哪種方案,第四年龍眼產(chǎn)量超過災(zāi)前產(chǎn)量的概率更大?
(3)不管哪種方案,如果實施后第四年龍眼產(chǎn)量達不到、恰好達到、超過災(zāi)前產(chǎn)量,預計利潤分別為10萬元、15萬元、20萬元.問實施哪種方案的平均利潤更大?

查看答案和解析>>

同步練習冊答案